

Welcome to homelette’s documentation!

homelette is a Python package offering a unified interface to different software for generating and evaluating homology models. This enables users to easily assemble custom homology modelling pipelines. homelette is extensively documented, lightweight and easily extendable.

[image: _images/logo.png]
If you use homelette in your research, please cite the following article:

Philipp Junk, Christina Kiel, HOMELETTE: a unified interface to homology modelling software, Bioinformatics, 2021;, btab866, https://doi.org/10.1093/bioinformatics/btab866

Setting up homelette

This section explains how to set homelette up on your system. homelette is available on GitHub and PyPI. The easiest option to work with homelette is to use a docker container that has all dependencies already installed.

	Installation

	Docker

Tutorials

We have prepared a series of 7 tutorials which will teach the interested user everything about using the homelette package. This is a great place to get started with homelette.

For a more interactive experience, all tutorials are available as Jupyter Notebooks through our Docker container.

	Tutorial 1: Basics

	Tutorial 2: Model Generation

	Tutorial 3: Model Evaluation

	Tutorial 4: Extending homelette

	Tutorial 5: Parallelization

	Tutorial 6: Complex Modelling

	Tutorial 7: Assembling Modelling Pipelines

	Tutorial 8: Automatic Alignment Generation

API Documentation

This is the documentation for all classes, methods and functions in homelette.

	Organization

	Sequences and Alignments

	Routines

	Evaluation

	PDB File interface

Extensions

homelette can be extended by new building blocks. This section introduces how extensions work, and where to find them.

	Extension Overview

Indices and tables

	Index

	Module Index

Installation

While installing the homelette base package is easy, some of its dependencies are quite complicated to install. If you just want to try out homelette, we would encourage you to start with our Docker image which has all these dependencies already installed.

homelette

homelette is easily available through our GitHub page (GitHub homelette [https://github.com/PhilippJunk/homelette/]) or through PyPI.

python3 -m pip install homelette

Please be aware that homelette requires Python 3.6.12 or newer.

Modelling and Evaluation Software

homelette doesn’t have model generating or model evaluating capabilities on its own. Instead, it provides a unified interface to other software with these capabilities.

None of the tools and packages listed here are “hard” dependencies in the way that homelette won’t work if you have them not installed. Actually, you can still use homelette without any of these packages. However, none of the pre-implemented building blocks would work that way. It is therefore strongly recommended that, in order to get the most out of homelette, to install as many of these tools and packages.

Again, we want to mention that we have prepared a Docker image that contains all of these dependencies, and we strongly recommend that you start there if you want to find out if homelette is useful for you.

MODELLER

Installation instructions for MODELLER can be found here: Installation MODELLER [https://salilab.org/modeller/download_installation.html].
Requires a license key (freely available for academic research) which can be requested here: License MODELLER [https://salilab.org/modeller/registration.html].

altMOD

altMOD can be installed from here: GitHub altMOD [https://github.com/pymodproject/altmod]. Please make sure that the altMOD directory is in your Python path.

ProMod3

ProMod3 has to be compiled from source, instructions can be found here: Installation ProMod3 [https://openstructure.org/promod3/]. Main dependencies are OpenMM (available through conda or from source) and OpenStructure (available here: Installation OpenStructure [https://openstructure.org/download/]).

QMEAN

QMEAN has be compiled from source, instructions can be found here: GitLab QMEAN [https://git.scicore.unibas.ch/schwede/QMEAN/]. Has the same dependencies as ProMod3.

SOAP potential

While the code for evaluation with SOAP is part of MODELLER, some files for SOAP are not included in the standard release and have to be downloaded separately. The files are available here Download SOAP [https://salilab.org/SOAP/].

Specifically, you need to have soap_protein_od.hdf5 available in your modlib directory. The modlib directory is placed at /usr/lib/modellerXX_XX/modlib/ if installed with dpkg or at anaconda/envs/yourenv/lib/modellerXX-XX/modlib/ if installed with conda. These paths might be different on your system.

MolProbity

Installation instructures for MolProbity are available here: Github MolProbity [https://github.com/rlabduke/MolProbity]. Please make sure that after installation, phenix.molprobity is in your path.

Alignment Software

homelette is, given a query sequence, to automatically search for potential templates and generate sequence alignments. This requires additional software.

Clustal Omega

Clustal Omega is a light and powerful multiple sequence alignment tool. It can be obtained as source code or precompiled from here: Clustal Omega webpage [http://www.clustal.org/omega/]. Please make sure that after installation, clustalo is in your path.

HHSuite3

Installation instructions for HHSuite3 are available here: Github HHSuite [https://github.com/soedinglab/hh-suite]. Please make sure that after installation, hhblits is in your path.

Databases for HHSuite3

Information on how to obtain the databases is available here: Github HHSuite [https://github.com/soedinglab/hh-suite]. The PDB70 database (~25 GB download, ~65 GB extracted) is required for using HHSuite in homelette, while the UniRef30 database (50~ GB download, ~170 GB extracted) is optional. Please make sure that after downloading and extracting the databases that they are in one folder and are named pdb70_* and UniRef30_*, respectively.

Docker

One of the best ways to share software and software environments in a reproducible way is using Docker. We have prepared a way to set up a docker image containing homelette and all its dependencies.

Due to the way how MODELLER licenses need to be aquired for each individual user, a two step process to setting up the docker image is required:

	The template for the docker image that contains everything except a MODELLER license key will be pulled from DockerHub.

	With a valid MODELLER license key, a local image with all dependencies working will be generated.

Note

Due to the numerous dependencies installed in the Docker image, please be aware that the image is quite big (~10 GB).

Note

The databases required for using HHSuite3 are not included in the docker container due to their size.

The following sections will explain how to set up and use the docker image.

Setting up the docker image

A bash script (construct_homelette_image.sh found in homelette/docker/) has been provided which automatically pulls the latest version of the homelette_template image from DockerHub and then attempts to construct the local homelette image with the given MODELLER license key. After downloading the script from Github, run

./construct_homelette_image.sh "YOUR MODELLERKEY HERE"

Warning

The local image created by this contains your MODELLLER license key. Similarly, as you would not send your license key to others, please do not share this image with other people, including on DockerHub.

The script will fail and no local image will be constructed if the license key is not accepted by the MODELLER version in the container.

Accessing the docker image

After constructing the local homelette docker image, you can access the docker image as every other as well.

docker run --rm -it homelette

However, to make access a bit simpler, we have written a bash script (homelete.sh found in homelette/docker/) to provide different options and modes to access the docker image. There are four different modes available:

	./homelette.sh -m tutorial: This opens an interactive Jupyter Lab version of the tutorials.

	./homelette.sh -m jupyterlab: This opens an interactive Jupyter Lab session with access to homelette and all dependencies.

	./homelette.sh -m interacive: This opens an interactive Python interpreter session with access to homelette and all dependencies.

	./homelette.sh -m script: This allows the user to execute a Python script in the Docker container.

In addition, the script has the ability to make a number of directories from the host machine available to the container. Please check out ./homelette.sh -h for more details. All containers generated by this script will be removed after termination.

Tutorial 1: Basics

[1]:

import homelette as hm

Introduction

Welcome to the first tutorial on how to use the homelette package. In this example, we will generate homology models using both modeller [1,2] and ProMod3 [3,4] and then evaluate them using the DOPE score [5].

homelette is a Python package that delivers a unified interface to various homology modelling and model evaluation software. It is also easily customizable and extendable. Through a series of 7 tutorials, you will learn how to work with homelette as well as how to extend and adapt it to your specific needs.

In tutorial 1, you will learn how to:

	Import an alignment.

	Generate homology models using a predefined routine with modeller.

	Generate homology models using a predefined routine with ProMod3.

	Evaluate these models.

In this example, we will generate a protein structure for the RBD domain of ARAF. ARAF is a RAF kinase important in MAPK signalling. As a template, we will choose a close relative of ARAF called BRAF, specifically the structure with the PDB code 3NY5 [https://www.rcsb.org/structure/3NY5].

All files necessary for running this tutorial are already prepared and deposited in the following directory: homelette/example/data/. If you execute this tutorial from homelette/example/, you don’t have to adapt any of the paths.

homelette comes with an extensive documentation. You can either check out our online documentation [https://homelette.readthedocs.io], compile a local version of the documentation in homelette/docs/ or use the help() function in Python.

Alignment

The basis for a good homology model is a good alignment between your target and your template(s). There are many ways to generate alignments. Depending on the scope of your project, you might want to generate extensive, high-quality multiple sequence alignments from annotated sequence libraries of your sequences of interest using specific software such as t-coffee [http://www.tcoffee.org/Projects/tcoffee/documentation/] [6,7], or get a web service such as
HH-Pred [https://toolkit.tuebingen.mpg.de/tools/hhpred] [8,9] to search for potential templates and align them.

For this example, we have already provided an alignment for you.

homelette has its own Alignment class which is used to work with alignments. You can import alignments from different file types, write alignments to different file types, select a subset of sequences, calculate sequence identity and print the alignment to screen. For more information, please check out the documentation [https://homelette.readthedocs.io/].

[2]:

read in the alignment
aln = hm.Alignment('data/single/aln_1.fasta_aln')

print to screen to check alignment
aln.print_clustal(line_wrap=70)

ARAF ---GTVKVYLPNKQRTVVTVRDGMSVYDSLDKALKVRGLNQDCCVVYRLIKGRKTVTAWDTAIAPLDGEE
3NY5 HQKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRIQ---KKPIGWDTDISWLTGEE

ARAF LIVEVL------
3NY5 LHVEVLENVPLT

The template aligns nicely to our target. We can also check how much sequence identity these two sequences share:

[3]:

calculate identity
aln.calc_identity_target('ARAF')

[3]:

 Tutorial 2: Modelling

Tutorial 2: Modelling

[1]:

import os

import homelette as hm

Introduction

Welcome to the second tutorial for homelette. In this tutorial, we will further explore the already implemented method to generate homology models.

Currently, the following software packages for generating homology models have been integrated in the homelette homology modelling interface:

	modeller: A robust package for homology modelling with a long history which is widely used [1,2]

	altmod: A modification to the standard modeller modelling procedure that has been reported to increase the quality of models [3]

	ProMod3: The modelling engine behind the popular SwissModel web platform [4,5]

Specifically, the following routines are implemented in homelette. For more details on the individual routines, please check the documentation or their respective docstring.

	routines.Routine_automodel_default

	routines.Routine_automodel_slow

	routines.Routine_altmod_default

	routines.Routine_altmod_slow

	routines.Routine_promod3

In this example, we will generate models for the RBD domain of ARAF. ARAF is a RAF kinase important in MAPK signalling. As a template, we will choose a close relative of ARAF called BRAF, specifically the structure with the PDB code 3NY5 [https://www.rcsb.org/structure/3NY5].

All files necessary for running this tutorial are already prepared and deposited in the following directory: homelette/example/data/. If you execute this tutorial from homelette/example/, you don’t have to adapt any of the paths.

homelette comes with an extensive documentation. You can either check out our online documentation [https://homelette.readthedocs.io/], compile a local version of the documentation in homelette/docs/ with sphinx or use the help() function in Python.

Alignment

For this tutorial, we will use the same alignment and template as for Tutorial 1.

[2]:

read in the alignment
aln = hm.Alignment('data/single/aln_1.fasta_aln')

print to screen to check alignment
aln.print_clustal(line_wrap=70)

ARAF ---GTVKVYLPNKQRTVVTVRDGMSVYDSLDKALKVRGLNQDCCVVYRLIKGRKTVTAWDTAIAPLDGEE
3NY5 HQKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRIQ---KKPIGWDTDISWLTGEE

ARAF LIVEVL------
3NY5 LHVEVLENVPLT

[3]:

annotate the alignment
aln.get_sequence('ARAF').annotate(seq_type = 'sequence')
aln.get_sequence('3NY5').annotate(seq_type = 'structure',
 pdb_code = '3NY5',
 begin_res = '1',
 begin_chain = 'A',
 end_res = '81',
 end_chain = 'A')

Model Generation using routines

The building blocks in homelette that take care of model generation are called Routines. There is a number of pre-defined routines, and it is also possible to construct custom routines (see Tutorial 4). Every routine in homelette expects a number of identical arguments, while some can have a few optional ones as well.

[4]:

?hm.routines.Routine_automodel_default

Init signature:
hm.routines.Routine_automodel_default(
 alignment: Type[ForwardRef('Alignment')],
 target: str,
 templates: Iterable,
 tag: str,
 n_threads: int = 1,
 n_models: int = 1,
) -> None
Docstring:
Class for performing homology modelling using the automodel class from
modeller with a default parameter set.

Parameters

alignment : Alignment
 The alignment object that will be used for modelling
target : str
 The identifier of the protein to model
templates : Iterable
 The iterable containing the identifier(s) of the template(s) used
 for the modelling
tag : str
 The identifier associated with a specific execution of the routine
n_threads : int
 Number of threads used in model generation (default 1)
n_models : int
 Number of models generated (default 1)

Attributes

alignment : Alignment
 The alignment object that will be used for modelling
target : str
 The identifier of the protein to model
templates : Iterable
 The iterable containing the identifier(s) of the template(s) used for
 the modelling
tag : str
 The identifier associated with a specific execution of the routine
n_threads : int
 Number of threads used for model generation
n_models : int
 Number of models generated
routine : str
 The identifier associated with a specific routine
models : list
 List of models generated by the execution of this routine

Raises

ImportError
 Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this
Routine object:

* n_models
* n_threads

The following modelling parameters are set for this class:

+-----------------------+---------------------------------------+
| modelling | value |
| parameter | |
+=======================+=======================================+
| model_class | modeller.automodel.automodel |
+-----------------------+---------------------------------------+
| library_schedule | modeller.automodel.autosched.normal |
+-----------------------+---------------------------------------+
| md_level | modeller.automodel.refine.very_fast |
+-----------------------+---------------------------------------+
| max_var_iterations | 200 |
+-----------------------+---------------------------------------+
| repeat_optmization | 1 |
+-----------------------+---------------------------------------+
File: /usr/local/src/homelette-1.4/homelette/routines.py
Type: type
Subclasses:

The following arguments are required for all pre-defined routines:

	alignment: The alignment object used for modelling.

	target: The identifier of the target sequence in the alignment object

	templates: An iterable containing the identifier(s) of the templates for this modelling routine. homelette expects that templates are uniquely identified by their identifier in the alignment and in the template PDB file(s). Routines based on modeller work with one or multiple templates, whereas Routine_promod3 only accepts a single template per run.

	tag: Each executed routine is given a tag which will be used to name the generated models.

In addition, pre-defined routines expect the template PDBs to be present in the current working directory.

The routine Routine_automodel_default has two optional arguments:

	n_models: the number of models that should be produced on this run, as routines based on modeller are able to produce an arbitary number of models.

	n_threads: enable mulit-threading for the execution of this routine. For more information on parallelization in homelette, please check out Tutorial 5.

While it is generally recommended to execute routines using Task objects (see next section), it is also possible to execute them directly. For doing this, since the template file has to be in the curent working directory, we quickly change working directory to a prepared directory where we can execute the routine (this code assumes that your working directory is homelette/examples.

[5]:

change directory
os.chdir('data/single')
print content of directory to screen
print('Files before modelling:\n' + ' '.join(os.listdir()) + '\n\n')

perform modelling
routine = hm.routines.Routine_automodel_default(
 alignment=aln,
 target='ARAF',
 templates=['3NY5'],
 tag='model')
routine.generate_models()

print('Files after modelling:\n' + ' '.join(os.listdir()) + '\n')

remove model
os.remove('model_1.pdb')

change back to tutorial directory
os.chdir('../..')

Files before modelling:
3NY5.pdb aln_1.fasta_aln 4G0N.pdb

Files after modelling:
model_1.pdb 3NY5.pdb aln_1.fasta_aln 4G0N.pdb

Model Generation using Task and routines

homelette has Task objects that allow for easier use of Routines and Evaluations (see also Tutorial 3). Task objects help to direct and organize modelling pipelines. It is strongly recommended to use Task objects to execute routines and evaluations.

For more information on Task objects, please check out the documentation [https://homelette.readthedocs.io/] or Tutorial 1.

[6]:

set up task object
t = hm.Task(
 task_name = 'Tutorial2',
 target = 'ARAF',
 alignment = aln,
 overwrite = True)

Using the Task object, we can now begin to generate our models with different routines using the Task.execute_routine method.

[7]:

?hm.Task.execute_routine

Signature:
hm.Task.execute_routine(
 self,
 tag: str,
 routine: Type[ForwardRef('routines.Routine')],
 templates: Iterable,
 template_location: str = '.',
 **kwargs,
) -> None
Docstring:
Generates homology models using a specified modelling routine

Parameters

tag : str
 The identifier associated with this combination of routine and
 template(s). Has to be unique between all routines executed by the
 same task object
routine : Routine
 The routine object used to generate the models
templates : list
 The iterable containing the identifier(s) of the template(s) used
 for model generation
template_location : str, optional
 The location of the template PDB files. They should be named
 according to their identifiers in the alignment (i.e. for a
 sequence named "1WXN" to be used as a template, it is expected that
 there will be a PDB file named "1WXN.pdb" in the specified template
 location (default is current working directory)
**kwargs
 Named parameters passed directly on to the Routine object when the
 modelling is performed. Please check the documentation in order to
 make sure that the parameters passed on are available with the
 Routine object you intend to use

Returns

None
File: /usr/local/src/homelette-1.4/homelette/organization.py
Type: function

As we can see, Task.execute_routine expects a number of arguments from the user:

	tag: Each executed routine is given a tag which will be used to name the generated models. This is useful for differentiating between different routines executed by the same Task, for example if different templates are used.

	routine: Here the user can set which routine will be used for generating the homology model(s), arguably the most important setting.

	templates: An iterable containing the identifier(s) of the templates for this modelling routine. homelette expects that templates are uniquely identified by their identifier(s) in the alignment and in the template location.

	template_location: The folder where the PDB file(s) used as template(s) are found.

We are generating some models with the pre-defined routines of homelette:

[8]:

model generation with modeller
t.execute_routine(
 tag = 'example_modeller',
 routine = hm.routines.Routine_automodel_default,
 templates = ['3NY5'],
 template_location = './data/single')

model generation with altmod
t.execute_routine(
 tag = 'example_altmod',
 routine = hm.routines.Routine_altmod_default,
 templates = ['3NY5'],
 template_location = './data/single')

model generation with promod3
t.execute_routine(
 tag = 'example_promod3',
 routine = hm.routines.Routine_promod3,
 templates = ['3NY5'],
 template_location = './data/single')

As mentioned before, some modelling routines have optional arguments, such as n_models for Routine_autmodel_default. We can pass these optional arguments to Task.execute_routine which passes them on the routine selected:

[9]:

multiple model generation with altmod
t.execute_routine(
 tag = 'example_modeller_more_models',
 routine = hm.routines.Routine_automodel_default,
 templates = ['3NY5'],
 template_location = './data/single',
 n_models = 10)

Models generated using Task objects are stored as Model objects in the Task:

[10]:

t.models

[10]:

[<homelette.organization.Model at 0x7f421f7f9280>,
 <homelette.organization.Model at 0x7f421f7cf7f0>,
 <homelette.organization.Model at 0x7f421f8f4370>,
 <homelette.organization.Model at 0x7f421f8dfca0>,
 <homelette.organization.Model at 0x7f421f8df2e0>,
 <homelette.organization.Model at 0x7f421f8da2b0>,
 <homelette.organization.Model at 0x7f421f8da400>,
 <homelette.organization.Model at 0x7f421f8da370>,
 <homelette.organization.Model at 0x7f421f806220>,
 <homelette.organization.Model at 0x7f421f806cd0>,
 <homelette.organization.Model at 0x7f421f806a00>,
 <homelette.organization.Model at 0x7f421f806f10>,
 <homelette.organization.Model at 0x7f421f806280>]

In conclusion, we have learned how to use a single Task object to generate models with different modelling routines. We have also learned how to pass optional arguments on to the executed routines.

In this example, the target, the alignment and the templates were kept identical. Varying the templates would be straight forward, under the condition that other templates are included in the alignment. For varying alignments and targets, new Task objects would need to be created. This is a design choice that is meant to encourage users to try out different routines or templates/template combinations. It is recommended when using different routines or multiple templates to indicate this
using the tag argument of Task.execute_routine (i.e. tag='automodel_3NY5'). Similarly, using a single Task object for multiple targets or alignments is discouraged and we recommend to utilize multiple Task objects for these modelling approaches.

Further Reading

You are now familiar with model generation in homelette.

Please note that there are other tutorials, which will teach you more about how to use homelette:

	Tutorial 1: Learn about the basics of homelette.

	Tutorial 3: Learn about the evaluation metrics available with homelette.

	Tutorial 4: Learn about extending homelette’s functionality by defining your own modelling routines and evaluation metrics.

	Tutorial 5: Learn about how to use parallelization in order to generate and evaluate models more efficiently.

	Tutorial 6: Learn about modelling protein complexes.

	Tutorial 7: Learn about assembling custom pipelines.

	Tutorial 8: Learn about automated template identification, alignment generation and template processing.

References

[1] Šali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. https://doi.org/10.1006/jmbi.1993.1626

[2] Webb, B., & Sali, A. (2016). Comparative Protein Structure Modeling Using MODELLER. Current Protocols in Bioinformatics, 54(1), 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3

[3] Janson, G., Grottesi, A., Pietrosanto, M., Ausiello, G., Guarguaglini, G., & Paiardini, A. (2019). Revisiting the “satisfaction of spatial restraints” approach of MODELLER for protein homology modeling. PLoS Computational Biology, 15(12), e1007219. https://doi.org/10.1371/journal.pcbi.1007219

[4] Biasini, M., Schmidt, T., Bienert, S., Mariani, V., Studer, G., Haas, J., Johner, N., Schenk, A. D., Philippsen, A., & Schwede, T. (2013). OpenStructure: An integrated software framework for computational structural biology. Acta Crystallographica Section D: Biological Crystallography, 69(5), 701–709. https://doi.org/10.1107/S0907444913007051

[5] Studer, G., Tauriello, G., Bienert, S., Biasini, M., Johner, N., & Schwede, T. (2021). ProMod3—A versatile homology modelling toolbox. PLOS Computational Biology, 17(1), e1008667. https://doi.org/10.1371/JOURNAL.PCBI.1008667

Session Info

[11]:

session info
import session_info
session_info.show(html = False, dependencies = True)

homelette 1.4
session_info 1.0.0

PIL 7.0.0
altmod NA
anyio NA
asttokens NA
attr 19.3.0
babel 2.12.1
backcall 0.2.0
certifi 2022.12.07
chardet 3.0.4
charset_normalizer 3.1.0
comm 0.1.2
cycler 0.10.0
cython_runtime NA
dateutil 2.8.2
debugpy 1.6.6
decorator 4.4.2
executing 1.2.0
fastjsonschema NA
idna 3.4
importlib_metadata NA
importlib_resources NA
ipykernel 6.21.3
ipython_genutils 0.2.0
jedi 0.18.2
jinja2 3.1.2
json5 NA
jsonschema 4.17.3
jupyter_events 0.6.3
jupyter_server 2.4.0
jupyterlab_server 2.20.0
kiwisolver 1.0.1
markupsafe 2.1.2
matplotlib 3.1.2
modeller 10.4
more_itertools NA
mpl_toolkits NA
nbformat 5.7.3
numexpr 2.8.4
numpy 1.24.2
ost 2.3.1
packaging 20.3
pandas 1.5.3
parso 0.8.3
pexpect 4.8.0
pickleshare 0.7.5
pkg_resources NA
platformdirs 3.1.1
prometheus_client NA
promod3 3.2.1
prompt_toolkit 3.0.38
psutil 5.5.1
ptyprocess 0.7.0
pure_eval 0.2.2
pydev_ipython NA
pydevconsole NA
pydevd 2.9.5
pydevd_file_utils NA
pydevd_plugins NA
pydevd_tracing NA
pygments 2.14.0
pyparsing 2.4.6
pyrsistent NA
pythonjsonlogger NA
pytz 2022.7.1
qmean NA
requests 2.28.2
rfc3339_validator 0.1.4
rfc3986_validator 0.1.1
send2trash NA
sitecustomize NA
six 1.12.0
sniffio 1.3.0
stack_data 0.6.2
swig_runtime_data4 NA
tornado 6.2
traitlets 5.9.0
urllib3 1.26.15
wcwidth NA
websocket 1.5.1
yaml 6.0
zipp NA
zmq 25.0.1

IPython 8.11.0
jupyter_client 8.0.3
jupyter_core 5.2.0
jupyterlab 3.6.1
notebook 6.5.3

Python 3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0]
Linux-4.15.0-206-generic-x86_64-with-glibc2.29

Session information updated at 2023-03-15 23:35

 Tutorial 3: Evaluation

Tutorial 3: Evaluation

[1]:

import homelette as hm

Introduction

Welcome to the third tutorial for homelette. In this tutorial, we will explore which evaluation metrics are implemented in homelette and how to use them.

Model evaluation is an important step in any homology modelling procedure. In most practical scenarios, you will end up with more than one possible model and have to decide which one is “best”. Obtaining multiple models can be the result of trying out different templates or combinations of templates, different algorithms generating the models, or due to using an algorithm which can generate multiple models.

The following evaluation metrics are implemented in homelette:

	evaluation.Evaluation_dope: DOPE score from modeller [1]

	evaluation.Evaluation_soap_protein: SOAP score from modeller for the evaluation of single proteins [2]

	evaluation.Evaluation_soap_pp: SOAP score from modeller for the evaluation of protein complexes [2]

	evaluation.Evaluation_qmean4: QMEAN4 score [3,4]

	evaluation.Evaluation_qmean6: QMEAN6 score [3,4]

	evaluation.Evaluation_qmeandisco: QMEAN DisCo score [3,4,5]

	evaluation.Evaluation_mol_probity: MolProbity score for the structural evaluation of proteins [6,7,8]

All files necessary for running this tutorial are already prepared and deposited in the following directory: homelette/example/data/. If you execute this tutorial from homelette/example/, you don’t have to adapt any of the paths.

homelette comes with an extensive documentation. You can either check out our online documentation [https://homelette.readthedocs.io/], compile a local version of the documentation in homelette/docs/ with sphinx or use the help() function in Python.

Model Generation

In order to have a few models to evaluate, we will briefly generate some models of ARAF as we have done in previous tutorials (please check Tutorial 1 and Tutorial 2 for more information on this part).

[2]:

get alignment
aln = hm.Alignment('data/single/aln_1.fasta_aln')

annotate the alignment
aln.get_sequence('ARAF').annotate(
 seq_type = 'sequence')
aln.get_sequence('3NY5').annotate(
 seq_type = 'structure',
 pdb_code = '3NY5',
 begin_res = '1',
 begin_chain = 'A',
 end_res = '81',
 end_chain = 'A')

initialize task object
t = hm.Task(
 task_name = 'Tutorial3',
 target = 'ARAF',
 alignment = aln,
 overwrite = True)

generate models with modeller
t.execute_routine(
 tag = 'modeller',
 routine = hm.routines.Routine_automodel_default,
 templates = ['3NY5'],
 template_location = './data/single',
 n_models = 5)

generate models with altmod
t.execute_routine(
 tag = 'altmod',
 routine = hm.routines.Routine_altmod_default,
 templates = ['3NY5'],
 template_location = './data/single',
 n_models = 5)

We now have generated 10 models, 5 generated with modeller and another 5 generated with altmod.

Model Evaluation using evaluation

Similar to routines, evaluations can be executed on their own, although it is recommended to use an interface through the Task object (see next section). For showcasing how an evaluation can be executed on its own, we will take one of the previously generated models as an example:

[3]:

example model
model = t.models[0]
model

[3]:

<homelette.organization.Model at 0x7f7f681ae250>

Every Model object has an Model.evaluation attribute where information about the model and its evaluations are collected:

[4]:

model.evaluation

[4]:

{'model': 'modeller_1.pdb', 'tag': 'modeller', 'routine': 'automodel_default'}

After performing an evaluation, this dictionary will be updated with the results of the evaluation:

[5]:

hm.evaluation.Evaluation_dope(model, quiet=True)
model.evaluation

[5]:

{'model': 'modeller_1.pdb',
 'tag': 'modeller',
 'routine': 'automodel_default',
 'dope': -7216.8564453125,
 'dope_z_score': -1.5211129532811163}

The interface to evaluations is relatively simple:

[6]:

?hm.evaluation.Evaluation_dope

Init signature:
hm.evaluation.Evaluation_dope(
 model: Type[ForwardRef('Model')],
 quiet: bool = False,
) -> None
Docstring:
Class for evaluating a model with DOPE score.

Will dump the following entries to the model.evaluation dictionary:

* dope
* dope_z_score

Parameters

model : Model
 The model object to evaluate
quiet : bool
 If True, will perform evaluation with suppressing stdout (default
 False). Needs to be False for running it asynchronously, as done
 when running Task.evaluate_models with multple cores

Attributes

model : Model
 The model object to evaluate
output : dict
 Dictionary that all outputs will be dumped into

Raises

ImportError
 Unable to import dependencies

Notes

DOPE is a staticial potential for the evaluation of homology models [1]_.
For further information, please check the modeller documentation or the
associated publication.

References

.. [1] Shen, M., & Sali, A. (2006). Statistical potential for assessment
 and prediction of protein structures. Protein Science, 15(11),
 2507–2524. https://doi.org/10.1110/ps.062416606
File: /usr/local/src/homelette-1.4/homelette/evaluation.py
Type: type
Subclasses:

Evaluations take only two arguments: - model: A Model object - quiet: A boolean value determining whether any output to the console should be suppressed.

Unlike routines, evaluations are executed as soon as the object is initialized.

Model Evaluation using Task and evaluation

Using the interface to evaluations that is implemented in Task objects has several advantages: it is possible to evaluate multiple models with multiple evaluation metrics in one command. In addition, multi-threading can be enabled (see Tutorial 5 for more details). The method to run evaluations with a Task object is called evaluate_models.

[7]:

?hm.Task.evaluate_models

Signature:
hm.Task.evaluate_models(
 self,
 *args: Type[ForwardRef('evaluation.Evaluation')],
 n_threads: int = 1,
) -> None
Docstring:
Evaluates models using one or multiple evaluation metrics

Parameters

*args: Evaluation
 Evaluation objects that will be applied to the models
n_threads : int, optional
 Number of threads used for model evaluation (default is 1, which
 deactivates parallelization)

Returns

None
File: /usr/local/src/homelette-1.4/homelette/organization.py
Type: function

[8]:

running dope and soap at the same time
t.evaluate_models(hm.evaluation.Evaluation_dope,
 hm.evaluation.Evaluation_soap_protein)

After running evaluations, output of all Model.evaluation can be compiled to a pandas data frame as such:

[9]:

t.get_evaluation()

[9]:

 Tutorial 4: Extending homelette

Tutorial 4: Extending homelette

[1]:

import homelette as hm

import contextlib
import glob
import os.path
import sys

from modeller import environ, Selection
from modeller.automodel import LoopModel

Introduction

Welcome to the forth tutorial on homelette. In this tutorial, we will discuss how to implement custom building blocks, either for generating or for evaluating models. These custom building blocks can be integrated in homology modelling pipelines.

This is probably the most important tutorial in the series. After this tutorial, you will be able to implement your own routines into the homelette framework, which gives you complete control over the homology modelling pipelines you want to establish!

Please note that we encourage users to share custom routines and evaluation metrics if they think they might be useful for the community. In our online documentation [https://homelette.readthedocs.io/], there is a dedicated section for these contributions. If you are interested, please contact us on GitHub [https://github.com/PhilippJunk/homelette] or via email.

Alignment

For this tutorial, we are using the same alignment as in Tutorial 1. Identical to Tutorial 1, the alignment is imported and annotated and a Task object is created.

[2]:

read in the alignment
aln = hm.Alignment('data/single/aln_1.fasta_aln')

annotate the alignment
aln.get_sequence('ARAF').annotate(
 seq_type = 'sequence')
aln.get_sequence('3NY5').annotate(
 seq_type = 'structure',
 pdb_code = '3NY5',
 begin_res = '1',
 begin_chain = 'A',
 end_res = '81',
 end_chain = 'A')

initialize task object
t = hm.Task(
 task_name = 'Tutorial4',
 target = 'ARAF',
 alignment = aln,
 overwrite = True)

Defining custom routines

As an example for a custom routine, we will implement a LoopModel class from modeller [1,2] loosely following this tutorial [https://salilab.org/modeller/tutorial/advanced.html] on the modeller web page (in the section Loop Refining).

[3]:

class Routine_loopmodel(hm.routines.Routine): # (1)
 '''
 Custom routine for modeller loop modelling.
 '''
 def __init__(self, alignment, target, templates, tag, n_models=1, n_loop_models=1): # (2)
 hm.routines.Routine.__init__(self, alignment, target, templates, tag)
 self.routine = 'loopmodel' # string identifier of routine

 self.n_models = n_models
 self.n_loop_models = n_loop_models

 def generate_models(self): # (3)
 # (4) process alignment
 self.alignment.select_sequences([self.target] + self.templates)
 self.alignment.remove_redundant_gaps()
 # write alignemnt to temporary file
 self.alignment.write_pir('.tmp.pir')

 # (5) define custom loop model class
 class MyLoop(LoopModel):
 # set residues that will be refined by loop modelling
 def select_loop_atoms(self):
 return Selection(self.residue_range('18:A', '22:A'))

 with contextlib.redirect_stdout(None): # (6) suppress modeller output to stdout
 # (7) set up modeller environment
 env = environ()
 env.io.hetatm = True

 # initialize model
 m = MyLoop(env,
 alnfile='.tmp.pir',
 knowns=self.templates,
 sequence=self.target)

 # set modelling parameters
 m.blank_single_chain = False
 m.starting_model = 1
 m.ending_model = self.n_models
 m.loop.starting_model = 1
 m.loop.ending_model = self.n_loop_models

 # make models
 m.make()

 # (8) capture output
 for pdb in glob.glob('{}.BL*.pdb'.format(self.target)):
 self.models.append(
 hm.Model(os.path.realpath(os.path.expanduser(pdb)),
 self.tag, self.routine))

 # (9) rename files with method from hm.routines.Routine
 self._rename_models()

 # (10) clean up
 self._remove_files(
 '{}.B99*.pdb'.format(self.target),
 '{}.D00*'.format(self.target),
 '{}.DL*'.format(self.target),
 '{}.IL*'.format(self.target),
 '{}.ini'.format(self.target),
 '{}.lrsr'.format(self.target),
 '{}.rsr'.format(self.target),
 '{}.sch'.format(self.target),
 '.tmp*')

The lines of code in the definition of the custom routine above that are marked with numbers get special comments here:

	Our custom routine in this example inherits from a parent class Routine defined in homelette. This is not strictly necessary, however, the parent class has a few useful functions already implemented that we will make use of (see steps 2, 9, 10)

	Every routine needs to accept these arguments: alignment, target, templates, tag. In our case, we just hand them through to the parent method Routine.__init__ that saves them as attributes, as well as introduces the attribute self.models where models will be deposited after generation.

	Every routine needs a generate_models method. Usually, functionality for, you guessed it, model generation is packed in there.

	modeller requires the aligment as a file in PIR format. The following few lines of code format the alignment and then produce the required file.

	The following lines follow closely the modeller tutorial [https://salilab.org/modeller/tutorial/advanced.html] for loop modelling. This part implements a custom LoopModel class that defines a specific set of residue to be considered for loop modelling.

	modeller writes a lot of output to stdout, and using contextlib is a way to suppress this output. If you want to see all the output from modeller, either delete the with statement or write with contextlib.redirect_stdout(sys.stdout): instead.

	The following lines follow closely the modeller tutorial [https://salilab.org/modeller/tutorial/advanced.html] for loop modelling. This part initializes the model and generates the models requested.

	The final models generated will be called ARAF.BL00010001.pdb and so on. These lines of code find these PDB files and add them to the Routine_loopmodel.models list as Models. After execution by a Task objects, Model objects in this list will be added to the Task.models list.

	Models generated will be renamed according to the tag given using the parent class method Routine._rename_models.

	Temporary files from modeller as well as the temporary alignment file are removed from the folder using the parent class method Routine._remove_files.

Now, after implementing the routine, let’s try it out in practice. As explained in Tutorial 2, we will be using the Task.execute_routine interface for that:

[4]:

perform modelling
t.execute_routine(
 tag = 'custom_loop',
 routine = Routine_loopmodel,
 templates = ['3NY5'],
 template_location = './data/single',
 n_models = 2,
 n_loop_models = 2)

[5]:

check generated models
t.models

[5]:

[<homelette.organization.Model at 0x7f211ff3fa30>,
 <homelette.organization.Model at 0x7f211ff54a30>,
 <homelette.organization.Model at 0x7f211ff54d90>,
 <homelette.organization.Model at 0x7f211ff54e20>]

In practice, a valid routine only needs to adhere to a small number of formal criteria to fit in the homelette framework:

	It needs to be an object.

	It needs to have an __init__ method that can handle the named arguments alignment, target, templates and tag.

	It needs a generate_models method.

	It needs an attribute models in which generated models are stored as Model objects in list.

Any object that satisfies these criteria can be used in the framework.

Defining custom evaluations

As an example for a custom evaluation, we will implement a sample evaluation that counts the number of residues in the models.

[6]:

class Evaluation_countresidues():
 '''
 Custom evaluation: counting CA atoms
 '''
 def __init__(self, model, quiet=True): # (1)
 self.model = model
 self.output = dict()
 # (2) perform evaluation
 self.evaluate()
 # (3) update model.evaluation
 self.model.evaluation.update(self.output)

 def evaluate(self): # (4)
 # (5) parse model pdb
 pdb = self.model.parse_pdb()

 # count number of CA atoms in PDB
 n_residues = pdb['name'].eq('CA').sum()

 # append to output
 self.output['n_residues'] = n_residues

The lines of code marked with numbers in the definiton of the custom evaluation get special comments here:

	The __init__ function takes exactly 2 arguments: model and quiet. quiet is a boolean value indicating whether output to stdout should be suppressed (not applicable in this case).

	All evaluation metrics are executed upon initialization.

	The custom_evaluation.output dictionary is merged with the Model.evaluation dictionary to make the output of our evaluation metrics available to the model.

	Here we define the function where the actual evaluation takes place.

	For the actual evaluation, we make use of the Model.parse_pdb method, which parses the PDB file associated to a specific model object to a pandas data frame. This can be useful for a number of evaluations (access residues, coordinates, etc.)

Note

If more arguments are required for a custom evaluation, we recomment to store them as attributes in the Model objects and then access these attributes while running the evaluation.

Now we apply our custom evaluation to our previously generated models using the Task.evaluate_models interface (for more details, see Tutorial 3):

[7]:

t.evaluate_models(Evaluation_countresidues)
t.get_evaluation()

[7]:

 Tutorial 5: Parallelization

Tutorial 5: Parallelization

[1]:

import homelette as hm

import time

Introduction

Welcome to the fifth tutorial on homelette. This tutorial is about parallelization in homelette. When modelling hundreds or thousands of models, some processes can be significantly sped up by dividing the workload on multiple processes in parallel (supported by appropriate hardware).

There are possibilities to parallelize both model generation and evaluation in homelette.

Alignment and Task setup

For this tutorial, we are using the same alignment as in Tutorial 1. Identical to previous tutorials, the alignment is imported and annotated, and a Task object is set up.

[2]:

read in the alignment
aln = hm.Alignment('data/single/aln_1.fasta_aln')

annotate the alignment
aln.get_sequence('ARAF').annotate(
 seq_type = 'sequence')
aln.get_sequence('3NY5').annotate(
 seq_type = 'structure',
 pdb_code = '3NY5',
 begin_res = '1',
 begin_chain = 'A',
 end_res = '81',
 end_chain = 'A')

initialize task object
t = hm.Task(
 task_name = 'Tutorial5',
 target = 'ARAF',
 alignment = aln,
 overwrite = True)

Parallel model generation

When trying to parallelize model generation, homelette makes use of the parallelization methods implemented in the packages that homelette uses, if they are available. Model generation with modeller can be parallized and is available in homelette through a simple handler [1,2].

All modeller based, pre-implemented routines have the argument n_threads which can be used to use parallelization. The default is n_threads = 1 which does not activate parallelization, but any number > 1 will distribute the workload on the number of threads requested using the modeller.parallel submodule.

[3]:

use only 1 thread to generate 20 models
start = time.perf_counter()
t.execute_routine(
 tag = '1_thread',
 routine = hm.routines.Routine_automodel_default,
 templates = ['3NY5'],
 template_location = './data/single/',
 n_models = 20)
print(f'Elapsed time: {time.perf_counter() - start:.2f}')

Elapsed time: 47.84

[4]:

use 4 threads to generate 20 models faster
start = time.perf_counter()
t.execute_routine(
 tag = '4_threads',
 routine = hm.routines.Routine_automodel_default,
 templates = ['3NY5'],
 template_location = './data/single/',
 n_models = 20,
 n_threads = 4)
print(f'Elapsed time: {time.perf_counter() - start:.2f}')

Elapsed time: 15.44

Using multiple threads can significantly speed up model generation, especially if a large number of models is generated.

Note

Please be aware that the modeller.parallel submodule uses the Python module pickle, which requires objects to be pickled to be saved in a separate file. In practical terms, if you want to run parallelization in modeller with a custom object (i.e. a custom defined routine, see Tutorial 4), you cannot make use of parallelization unless you have imported it from a separate file. Therefore we recommend that custom routines and evaluation are saved in a separate file and then imported
from there.

The following code block shows how custom building blocks could be put in an external file (data/extension.py) and then imported for modelling and analysis.

[5]:

import from custom file
from data.extension import Custom_Routine, Custom_Evaluation

?Custom_Routine

Init signature: Custom_Routine()
Docstring: Custom routine waiting to be implemented.
File: ~/workdir/data/extension.py
Type: type
Subclasses:

[6]:

!cat data/extension.py

'''
Examples of custom objects for homelette in a external file.
'''

class Custom_Routine():
 '''
 Custom routine waiting to be implemented.
 '''
 def __init__(self):
 print('TODO: implement this')

class Custom_Evaluation():
 '''
 Custom evaluation waiting to be implemented.
 '''
 def __init__(self):
 print('TODO: implement this')

Alternatively, you could use the /homelette/extension/ folder in which extensions are stored. See our comments on extensions in our documentation [https://homelette.readthedocs.io/] for more details.

Parallel model evaluation

homelette can also use parallelization to speed up model evaluation. This is internally archieved by using concurrent.futures.ThreadPoolExecutor.

In order to use parallelization when performing evaluations, use the n_threads argument in Task.evaluate_models.

[7]:

use 1 thread for model evaluation
start = time.perf_counter()
t.evaluate_models(hm.evaluation.Evaluation_mol_probity, n_threads=1)
print(f'Elapsed time: {time.perf_counter() - start:.2f}')

Elapsed time: 468.37

[8]:

use 4 threads for model evaluation
start = time.perf_counter()
t.evaluate_models(hm.evaluation.Evaluation_mol_probity, n_threads=4)
print(f'Elapsed time: {time.perf_counter() - start:.2f}')

Elapsed time: 128.37

For some evaluation schemes, using parallelization can lead to a significant speedup.

Note

Please be advised that for some (very fast) evaluation methods, the time investment of spawning new child processes might not compensate for the speedup gained by parallelization. Test your usecase on your system in a small setting and use at your own discretion.

[9]:

use 1 thread for model evaluation
start = time.perf_counter()
t.evaluate_models(hm.evaluation.Evaluation_dope, n_threads=1)
print(f'Elapsed time: {time.perf_counter() - start:.2f}')

Elapsed time: 10.34

[10]:

use 4 threads for model evaluation
start = time.perf_counter()
t.evaluate_models(hm.evaluation.Evaluation_dope, n_threads=4)
print(f'Elapsed time: {time.perf_counter() - start:.2f}')

Elapsed time: 15.95

Note

When creating and using custom evaluation metrics, please make sure to avoid race conditions. Task.evaluate_models is implemented with a protection against race conditions, but this is not bulletproof. Also, if you need to create temporary files, make sure to create file names with model-specific names (i.e. by using the model name in the file name). Defining custom evaluations in a separate file is not necessary, as parallelization of evaluation methods does not rely on pickle.

Note

In case some custom evaluation metrics are very memory-demanding, running it in parallel can easily overwhelm the system. Again, we encourage you to test your usecase on your system in a small setting.

Further reading

Congratulation on completing Tutorial 5 about parallelization in homelette. Please note that there are other tutorials, which will teach you more about how to use homelette:

	Tutorial 1: Learn about the basics of homelette.

	Tutorial 2: Learn more about already implemented routines for homology modelling.

	Tutorial 3: Learn about the evaluation metrics available with homelette.

	Tutorial 4: Learn about extending homelette’s functionality by defining your own modelling routines and evaluation metrics.

	Tutorial 6: Learn about modelling protein complexes.

	Tutorial 7: Learn about assembling custom pipelines.

	Tutorial 8: Learn about automated template identification, alignment generation and template processing.

References

[1] Šali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. https://doi.org/10.1006/jmbi.1993.1626

[2] Webb, B., & Sali, A. (2016). Comparative Protein Structure Modeling Using MODELLER. Current Protocols in Bioinformatics, 54(1), 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3

Session Info

[11]:

session info
import session_info
session_info.show(html = False, dependencies = True)

data NA
homelette 1.4
session_info 1.0.0

PIL 7.0.0
altmod NA
anyio NA
asttokens NA
attr 19.3.0
babel 2.12.1
backcall 0.2.0
certifi 2022.12.07
chardet 3.0.4
charset_normalizer 3.1.0
comm 0.1.2
cycler 0.10.0
cython_runtime NA
dateutil 2.8.2
debugpy 1.6.6
decorator 4.4.2
executing 1.2.0
fastjsonschema NA
idna 3.4
importlib_metadata NA
importlib_resources NA
ipykernel 6.21.3
ipython_genutils 0.2.0
jedi 0.18.2
jinja2 3.1.2
json5 NA
jsonschema 4.17.3
jupyter_events 0.6.3
jupyter_server 2.4.0
jupyterlab_server 2.20.0
kiwisolver 1.0.1
markupsafe 2.1.2
matplotlib 3.1.2
modeller 10.4
more_itertools NA
mpl_toolkits NA
nbformat 5.7.3
numexpr 2.8.4
numpy 1.24.2
ost 2.3.1
packaging 20.3
pandas 1.5.3
parso 0.8.3
pexpect 4.8.0
pickleshare 0.7.5
pkg_resources NA
platformdirs 3.1.1
prometheus_client NA
promod3 3.2.1
prompt_toolkit 3.0.38
psutil 5.5.1
ptyprocess 0.7.0
pure_eval 0.2.2
pydev_ipython NA
pydevconsole NA
pydevd 2.9.5
pydevd_file_utils NA
pydevd_plugins NA
pydevd_tracing NA
pygments 2.14.0
pyparsing 2.4.6
pyrsistent NA
pythonjsonlogger NA
pytz 2022.7.1
qmean NA
requests 2.28.2
rfc3339_validator 0.1.4
rfc3986_validator 0.1.1
send2trash NA
sitecustomize NA
six 1.12.0
sniffio 1.3.0
stack_data 0.6.2
swig_runtime_data4 NA
tornado 6.2
traitlets 5.9.0
urllib3 1.26.15
wcwidth NA
websocket 1.5.1
yaml 6.0
zipp NA
zmq 25.0.1

IPython 8.11.0
jupyter_client 8.0.3
jupyter_core 5.2.0
jupyterlab 3.6.1
notebook 6.5.3

Python 3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0]
Linux-4.15.0-206-generic-x86_64-with-glibc2.29

Session information updated at 2023-03-15 23:56

 Tutorial 6: Complex Modelling

Tutorial 6: Complex Modelling

[1]:

import homelette as hm

Introduction

Welcome to the 6th tutorial on homelette about homology modelling of complex structures.

There are multiple issues about modelling protein complexes that make it a separate topic from the homology modelling of single structures:

	Usually, a complex structure is required as a template.

	Not all modelling programs can perform complex modelling.

	Not all evaluation metrics developed for homology modelling are applicable to complex structures.

	You need multiple alignments.

homelette is able to use modeller based modelling routines for complex modelling [1,2], and has some specific classes in place that make complex modelling easier to the user: - A function to assemble appropriate complex alignments - Special modelling classes for complex modelling - Special evaluation metrics for complex modelling

For this tutorial, we will build models for ARAF in complex with HRAS. As a template, we will use the structures [4G0N] (https://www.rcsb.org/structure/4G0N)(RAF1 in complex with HRAS) and 3NY5 [https://www.rcsb.org/structure/3NY5] (BRAF).

Alignment

Since all current modelling routines for protein complexes are modeller based, an alignment according to the modeller specification has to be constructed. homelette has the helper function assemble_complex_aln in the homelette.alignment submodule that is able to do that:

[2]:

?hm.alignment.assemble_complex_aln

Signature:
hm.alignment.assemble_complex_aln(
 *args: Type[ForwardRef('Alignment')],
 names: dict,
) -> Type[ForwardRef('Alignment')]
Docstring:
Assemble complex alignments compatible with MODELLER from individual
alignments.

Parameters

*args : Alignment
 The input alignments
names : dict
 Dictionary instructing how sequences in the different alignment objects
 are supposed to be arranged in the complex alignment. The keys are the
 names of the sequences in the output alignments. The values are
 iterables of the sequence names from the input alignments in the order
 they are supposed to appaer in the output alignment. Any value that can
 not be found in the alignment signals that this position in the complex
 alignment should be filled with gaps.

Returns

Alignment
 Assembled complex alignment

Examples

>>> aln1 = hm.Alignment(None)
>>> aln1.sequences = {
... 'seq1_1': hm.alignment.Sequence('seq1_1', 'HELLO'),
... 'seq2_1': hm.alignment.Sequence('seq2_1', 'H---I'),
... 'seq3_1': hm.alignment.Sequence('seq3_1', '-HI--')
... }
>>> aln2 = hm.Alignment(None)
>>> aln2.sequences = {
... 'seq2_2': hm.alignment.Sequence('seq2_2', 'KITTY'),
... 'seq1_2': hm.alignment.Sequence('seq1_2', 'WORLD')
... }
>>> names = {'seq1': ('seq1_1', 'seq1_2'),
... 'seq2': ('seq2_1', 'seq2_2'),
... 'seq3': ('seq3_1', 'gaps')
... }
>>> aln_assembled = hm.alignment.assemble_complex_aln(
... aln1, aln2, names=names)
>>> aln_assembled.print_clustal()
seq1 HELLO/WORLD
seq2 H---I/KITTY
seq3 -HI--/-----
File: /usr/local/src/homelette-1.4/homelette/alignment.py
Type: function

In our case, we assemble an alignment from two different alignments, aln_1 which contains ARAF, RAF1 (4G0N) and BRAF (3NY5) and aln_2 which contains an HRAS sequence and the HRAS sequence from 4G0N.

[3]:

import single alignments
aln1_file = 'data/complex/aln_eff.fasta_aln'
aln2_file = 'data/complex/aln_ras.fasta_aln'

aln_1 = hm.Alignment(aln1_file)
aln_2 = hm.Alignment(aln2_file)

build dictionary that indicates how sequences should be assembled
names = {
 'ARAF': ('ARAF', 'HRAS'),
 '4G0N': ('4G0N', '4G0N'),
 '3NY5': ('3NY5', ''),
}

assemble alignment
aln = hm.alignment.assemble_complex_aln(aln_1, aln_2, names=names)
aln.remove_redundant_gaps()
aln.print_clustal(line_wrap=70)

ARAF ---GTVKVYLPNKQRTVVTVRDGMSVYDSLDKALKVRGLNQDCCVVYRLI---KGRKTVTAWDTAIAPLD
4G0N -TSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARLDWNTDAASLI
3NY5 HQKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRIQ------KKPIGWDTDISWLT

ARAF GEELIVEVL------/MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLD
4G0N GEELQVDFL------/MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLD
3NY5 GEELHVEVLENVPLT/--

ARAF ILDTAGQEEYSAMRDQYMRTGEGFLCVFAINNTKSFEDIHQYREQIKRVKDSDDVPMVLVGNKCDLAART
4G0N ILDTAGQEE--AMRDQYMRTGEGFLCVFAINNTKSFEDIHQYREQIKRVKDSDDVPMVLVGNKCDLAART
3NY5 --

ARAF VESRQAQDLARSYGIPYIETSAKTRQGVEDAFYTLVREIRQ-
4G0N VESRQAQDLARSYGIPYIETSAKTRQGVEDAFYTLVREIRQH
3NY5 --

After assembling the complex alignment, we annotate it as usual:

[4]:

annotate alignment
aln.get_sequence('ARAF').annotate(seq_type='sequence')
aln.get_sequence('4G0N').annotate(seq_type = 'structure',
 pdb_code = '4G0N',
 begin_res = '1',
 begin_chain = 'A')
aln.get_sequence('3NY5').annotate(seq_type = 'structure',
 pdb_code = '3NY5',
 begin_res = '1',
 begin_chain = 'A')

Modelling

There are 4 routines available specifically for complex modelling based on modeller [1,2] and altmod [3]. They run with the same parameters as their counterparts for single structure modelling, except that they handle naming of new chains and residue numbers a bit differently.

The following routines are available for complex modelling:

	Routine_complex_automodel_default

	Routine_complex_automodel_slow

	Routine_complex_altmod_default

	Routine_complex_altmod_slow

[5]:

initialize task object
t = hm.Task(task_name='Tutorial6',
 alignment=aln,
 target='ARAF',
 overwrite=True)

Modelling can be performed with Task.execute_routine as usual.

[6]:

generate models based on a complex template
t.execute_routine(tag='automodel_' + '4G0N',
 routine=hm.routines.Routine_complex_automodel_default,
 templates = ['4G0N'],
 template_location='data/complex/',
 n_models=20,
 n_threads=5)

Not all templates have to be complex templates, it is perfectly applicable to mix complex templates and single templates. However, at least one complex template should be used in order to convey information about the orientation of the proteins to each other.

[7]:

generate models based on a complex and a single template
t.execute_routine(tag='automodel_' + '_'.join(['4G0N', '3NY5']),
 routine=hm.routines.Routine_complex_automodel_default,
 templates = ['4G0N', '3NY5'],
 template_location='data/complex',
 n_models=20,
 n_threads=5)

Evaluation

Not all evaluation metrics are designed to evaluate complex structures. For example, the SOAP score has different statistical potentials for single proteins (Evaluation_soap_protein) and for protein complexes (Evaluation_soap_pp) [4].

[8]:

perform evaluation
t.evaluate_models(hm.evaluation.Evaluation_mol_probity,
 hm.evaluation.Evaluation_soap_pp,
 n_threads=5)

[9]:

show a bit of the evaluation
t.get_evaluation().sort_values(by='soap_pp_all').head()

[9]:

 Tutorial 7: Assembling custom pipelines

Tutorial 7: Assembling custom pipelines

[1]:

import homelette as hm

import matplotlib as plt
import seaborn as sns

Introduction

Welcome to the final tutorial on homelette. This tutorial is about combining what we learnt in the previous tutorials about model generating and model evaluating building blocks.

The strength of homelette lies in its ability to A) be almost freely extendable by the user (see Tutorial 4) and B) in the ease with which pre-defined or custom-made building blocks for model generation and evaluation can be assembled into custom pipelines. This tutorial showcases B).

For our target sequence, ARAF, we will identify templates and generate alignments with the AlignmentGenerator_pdb building block [1,2,3,4]. We will select two templates, BRAF (3NY5 [https://www.rcsb.org/structure/3NY5]) and RAF1 (4G0N [https://www.rcsb.org/structure/4G0N]). We will build models for ARAF with two different routines, Routine_automodel_default and Routine_automodel_slow [5,6], and from the different templates. The generated models will be evaluated by SOAP
scores and MolProbity and a combined score will be calculated using Borda Count [7,8,9,10].

Alignment

Consistent with the other tutorials, we will be modelling the protein ARAF. For this tutorial, we will use the AlignmentGenerator_pdb in order to search for templates, create an alignment, and process both the templates as well as the alignment:

[2]:

gen = hm.alignment.AlignmentGenerator_pdb.from_fasta('data/alignments/ARAF.fa')

[3]:

search for templates and generate first alignment
gen.get_suggestion()
gen.show_suggestion()

Querying PDB...
Query successful, 16 found!

Retrieving sequences...
Sequences succefully retrieved!

Generating alignment...
Alignment generated!

[3]:

 Tutorial 8: Automatic Alignment Generation

Tutorial 8: Automatic Alignment Generation

[1]:

import homelette as hm

Introduction

Welcome to the eighth tutorial for homelette, in which we will explore homelette’s tool for automated alignment generation.

The alignment is a central step in homology modelling, and the quality of the alignment used for modelling has a lot of influence on the final models. In general, the challenge of creating solid sequence alignments is mainly dependent how closely the target and template are. If they share a high sequence identity, the alignments are easy to construct and the modelling process will most likely be successful.

Note

As a rule of thumb, it is said that everything above 50-60% sequence identity is well approachable, while everything below 30% sequence identity is very challenging to model.

homelette has methods that can automatically generate an alignment given a query sequence. However, these methods hide some of the complexity of generating good alignments. Use them at your own discretion, especially for target sequences with low sequence identity to any template.

Note

Be careful with automatically generated alignments if your protein of interest has no closely related templates

After these words of caution, let’s look at the implemented methods:

	alignment.AlignmentGenerator_pdb: Query the PDB and local alignment with Clustal Omega

	alignment.AlignmentGenerator_hhblits: Local database search against PDB70 database.

	alignment.AlignmentGenerator_from_aln: For if you already have an alignment ready, but want to make use of homelette’s processing of templates and alignments.

Method 1: Querying RCSB and Realignment of template sequences with Clusta Omega

This class performs a three step process:

	Template Identification: Query the RCSB using a sequence (interally, MMseq2 is used by RCSB) [1, 2] (get_suggestion)

	Then the sequences of identified templates are aligned locally using Clustal Omega [3, 4]. (get_suggesion)

	Finally, the template structures are downloaded and processed together with the alignment (get_pdbs)

Afterwards, the templates schould be ready for performing homology modelling.

For a practical demonstration, let’s find some templates for ARAF:

[2]:

gen = hm.alignment.AlignmentGenerator_pdb.from_fasta('data/alignments/ARAF.fa')
gen = hm.alignment.AlignmentGenerator_pdb(
sequence = 'GTVKVYLPNKQRTVVTVRDGMSVYDSLDKALKVRGLNQDCCVVYRLIKGRKTVTAWDTAIAPLDGEELIVEVL',
target = 'ARAF')

There are two ways how AlignmentGenerator can be initialized: either with a sequence, or from a fasta file. Both ways are shown above.

In the next step we use this sequence to generate an initial alignment:

[3]:

gen.get_suggestion()

Querying PDB...
Query successful, 16 found!

Retrieving sequences...
Sequences succefully retrieved!

Generating alignment...
Alignment generated!

As we can see from the output, we are querying the PDB and extracting potential templates. Then, an alignment is generated.

We can have a first look at the suggested templates as such:

[4]:

gen.show_suggestion()

[4]:

 homelette.organization

homelette.organization

The homelette.organization submodule contains classes for organizing
workflows.

Task is an object orchestrating model generation and evaluation.

Model is an object used for storing information about generated
models.

Tutorials

For an introduction to homelette’s workflow, Tutorial
1 is useful.
Assembling custom pipelines is discussed in Tutorial
7.

Classes

The following classes are part of this submodule:

Task
Model

	
class homelette.organization.Task(task_name: str, target: str, alignment: Type[Alignment], task_directory: str = None, overwrite: bool = False)

	Class for directing modelling and evaluation.

It is designed for the modelling of one target sequence from one or
multiple templates.

If an already existing folder with models is specified, the Task object
will load those models in automatically. In this case, it can also be used
exclusively for evaluation purposes.

	Parameters:

	
	task_name (str) – The name of the task

	target (str) – The identifier of the protein to model

	alignment (Alignment) – The alignment object that will be used for modelling

	task_directory (str, optional) – The directory that will be used for this modelling task (default is
creating a new one based on the task_name)

	overwrite (bool, optional) – Boolean value determining if an already existing task_directory
should be overwriten. If a directory already exists for a given
task_name or task_directory, this will determine whether the
directory and all its contents will be overwritten (True), or
whether the contained models will be imported (False) (default is
False)

	Variables:

	
	task_name (str) – The name of the task

	task_directory (str) – The directory that will be used for this modelling task (default is to
use the task_name)

	target (str) – The identifier of the protein to model

	alignment (Alignment) – The alignment object that will be used for modelling

	models (list) – List of models generated or imported by this task

	routines (list) – List of modelling routines executed by this task

	Return type:

	None

	
execute_routine(tag: str, routine: Type[routines.Routine], templates: Iterable, template_location: str = '.', **kwargs) → None

	Generates homology models using a specified modelling routine

	Parameters:

	
	tag (str) – The identifier associated with this combination of routine and
template(s). Has to be unique between all routines executed by the
same task object

	routine (Routine) – The routine object used to generate the models

	templates (list) – The iterable containing the identifier(s) of the template(s) used
for model generation

	template_location (str, optional) – The location of the template PDB files. They should be named
according to their identifiers in the alignment (i.e. for a
sequence named “1WXN” to be used as a template, it is expected that
there will be a PDB file named “1WXN.pdb” in the specified template
location (default is current working directory)

	**kwargs – Named parameters passed directly on to the Routine object when the
modelling is performed. Please check the documentation in order to
make sure that the parameters passed on are available with the
Routine object you intend to use

	Return type:

	None

	
evaluate_models(*args: Type[evaluation.Evaluation], n_threads: int = 1) → None

	Evaluates models using one or multiple evaluation metrics

	Parameters:

	
	*args (Evaluation) – Evaluation objects that will be applied to the models

	n_threads (int, optional) – Number of threads used for model evaluation (default is 1, which
deactivates parallelization)

	Return type:

	None

	
get_evaluation() → pandas.DataFrame

	Return evaluation for all models as pandas dataframe.

	Returns:

	Dataframe containing all model evaluation

	Return type:

	pd.DataFrame

	
class homelette.organization.Model(model_file: str, tag: str, routine: str)

	Interface used to interact with created protein structure models.

	Parameters:

	
	model_file (str) – The file location of the PDB file for this model

	tag (str) – The tag that was used when generating this model (see
Task.execute_routine for more details)

	routine (str) – The name of the routine that was used to generate this model

	Variables:

	
	model_file (str) – The file location of the PDB file for this model

	tag (str) – The tag that was used when generating this model (see
Task.execute_routine for more details)

	routine (str) – The name of the routine that was used to generate this model

	info (dict) – Dictionary that can be used to store metadata about the model (i.e. for
some evaluation metrics)

	Return type:

	None

	
parse_pdb() → pandas.DataFrame

	Parses ATOM and HETATM records in PDB file to pandas dataframe
Useful for giving some evaluations methods access to data from the PDB
file.

	Return type:

	pd.DataFrame

Notes

Information is extracted according to the PDB file specification
(version 3.30) and columns are named accordingly. See
https://www.wwpdb.org/documentation/file-format for more information.

	
get_sequence() → str

	Retrieve the 1-letter amino acid sequence of the PDB file associated
with the Model object.

	Returns:

	Amino acid sequence

	Return type:

	str

	
rename(new_name: str) → None

	Rename the PDB file associated with the Model object.

	Parameters:

	new_name (str) – New name of PDB file

	Return type:

	None

 homelette.alignment

homelette.alignment

The homelette.alignment submodule contains a selection of tools for
handling sequences and alignments, as well as for the automatic generation of
sequences from a target sequence.

Tutorials

Basic handing of alignments with homelette is demonstrated in Tutorial
1. The assembling of alignments for complex
modelling is discussed in
Tutorial 6. The automatic generation
of alignments is shown in Tutorial 8.

Functions and classes

Functions and classes present in homelette.alignment are listed below:

Alignment
Sequence
AlignmentGenerator
AlignmentGenerator_pdb
AlignmentGenerator_hhblits
AlignmentGenerator_from_aln
assemble_complex_aln()

	
class homelette.alignment.Alignment(file_name: Optional[str] = None, file_format: str = 'fasta')

	Bases: object

Class for managing sequence alignments.

	Parameters:

	
	file_name (str, optional) – The file to read the alignment from. If no file name is given, an empty
alignment object will be created (default None)

	file_format (str, optional) – The format of the alignment file. Can be ‘fasta’ or ‘pir’ (default
‘fasta’)

	Variables:

	sequences (dict) – Collection of sequences. Sequences names are the dictionary keys,
Sequence objects the values

	Raises:

	ValueError – File_format specified is not ‘fasta’ or ‘pir’

	
get_sequence(sequence_name: str) → Type[Sequence]

	Retrieve sequence object by sequence name.

	Parameters:

	sequence_name (str) – Name of sequence to retrieve

	Return type:

	Sequence

	
select_sequences(sequence_names: Iterable) → None

	Select sequences to remain in the alignment by sequence name

	Parameters:

	sequence_names (iterable) – Iterable of sequence names

	Return type:

	None

	Raises:

	KeyError – Sequence name not found in alignment

	
remove_sequence(sequence_name: str) → None

	Remove a sequence from the alignment by sequence name.

	Parameters:

	sequence_name (str) – Sequence name to remove from alignment

	Return type:

	None

	
rename_sequence(old_name: str, new_name: str) → None

	Rename sequence in the alignment

	Parameters:

	
	old_name (str) – Old name of sequence

	new_name (str) – New name of sequence

	Return type:

	None

	
write_pir(file_name: str, line_wrap: int = 50) → None

	Write alignment to file in the PIR file format.

	Parameters:

	
	file_name (str) – File name to write to

	line_wrap (int) – Characters per line (default 50)

	Return type:

	None

	
write_fasta(file_name: str, line_wrap: int = 80) → None

	Write alignment to file in the FASTA alignment file format.

	Parameters:

	
	file_name (str) – File name to write to

	line_wrap (int) – Characters per line (default 80)

	Return type:

	None

	
print_clustal(line_wrap: int = 80) → None

	Print alignment to console in the clustal file format.

	Parameters:

	line_wrap (int) – Characters per line (default 80)

	Return type:

	None

	
write_clustal(file_name: str, line_wrap: int = 50) → None

	Write alignment to file in the clustal file format.

	Parameters:

	
	file_name (str) – File name to write to

	line_wrap (int) – Characters per line (default 50)

	Return type:

	None

	
remove_redundant_gaps() → None

	Remove gaps in the alignment that are present in every column.

	Return type:

	None

	
replace_sequence(seq_name: str, new_sequence: str) → None

	Targeted replacement of sequence in alignment.

	Parameters:

	
	seq_name (str) – The identifier of the sequence that will be replaced.

	new_sequence (str) – The new sequence.

Notes

This replacement is designed to introduce missing residues from
template structures into the alignment and therefore has very strict
requirements. The new and old sequence have to be identical, except
that the new sequence might contain unmodelled residues. These are
indicated by the letter ‘X’ in the new sequence, and will result in a
gap ‘-’ in the alignment after replacement. It is important that all
unmodelled residues, even at the start or beginning of the template
sequence are correctly labeled as ‘X’.

Examples

>>> aln = hm.Alignment(None)
>>> aln.sequences = {
... 'seq1': hm.alignment.Sequence('seq1', 'AAAACCCCDDDD'),
... 'seq2': hm.alignment.Sequence('seq2', 'AAAAEEEEDDDD'),
... 'seq3': hm.alignment.Sequence('seq3', 'AAAA----DDDD')
... }
>>> replacement_seq1 = 'AAAAXXXXXDDD'
>>> replacement_seq3 = 'AAXXXXDD'
>>> aln.replace_sequence('seq1', replacement_seq1)
>>> aln.print_clustal()
seq1 AAAA-----DDD
seq2 AAAAEEEEDDDD
seq3 AAAA----DDDD
>>> aln.replace_sequence('seq3', replacement_seq3)
>>> aln.print_clustal()
seq1 AAAA-----DDD
seq2 AAAAEEEEDDDD
seq3 AA--------DD

	
calc_identity(sequence_name_1: str, sequence_name_2: str) → float

	Calculate sequence identity between two sequences in the alignment.

	Parameters:

	
	sequence_name_1 (str) – Sequence pair to calculate identity for

	sequence_name_2 (str) – Sequence pair to calculate identity for

	Returns:

	identity – Sequence identity between the two sequences

	Return type:

	float

See also

calc_identity_target, calc_pairwise_identity_all

Notes

There are mutiple ways of calculating sequence identity, which can be
useful in different situations. Here implemented is one way which makes
a lot of sence for evaluating templates for homology modelling. The
sequence identity is calculated by dividing the number of matches by
the length of sequence 1 (mismatches and gaps are handled identically,
no gap compression).

\[\text{seqid} = \frac{\text{matches}}
{\text{length}(\text{sequence1})}\]

Examples

Gaps and mismatches are treated equally.

>>> aln = hm.Alignment(None)
>>> aln.sequences = {
... 'seq1': hm.alignment.Sequence('seq1', 'AAAACCCCDDDD'),
... 'seq2': hm.alignment.Sequence('seq2', 'AAAAEEEEDDDD'),
... 'seq3': hm.alignment.Sequence('seq3', 'AAAA----DDDD')
... }
>>> aln.calc_identity('seq1', 'seq2')
66.67
>>> aln.calc_identity('seq1', 'seq3')
66.67

Normalization happens for the length of sequence 1, so the order of
sequences matters.

>>> aln = hm.Alignment(None)
>>> aln.sequences = {
... 'seq1': hm.alignment.Sequence('seq1', 'AAAACCCCDDDD'),
... 'seq2': hm.alignment.Sequence('seq3', 'AAAA----DDDD')
... }
>>> aln.calc_identity('seq1', 'seq2')
66.67
>>> aln.calc_identity('seq2', 'seq1')
100.0

	
calc_pairwise_identity_all() → Type[pandas.DataFrame]

	Calculate identity between all sequences in the alignment.

	Returns:

	identities – Dataframe with pairwise sequence identites

	Return type:

	pd.DataFrame

See also

calc_identity, calc_identity_target

Notes

Calculates sequence identity as descripted for calc_identity:

\[\text{seqid} = \frac{\text{matches}}
{\text{length}(\text{sequence1})}\]

	
calc_identity_target(sequence_name: str) → Type[pandas.DataFrame]

	Calculate identity of all sequences in the alignment to specified
target sequence.

	Parameters:

	sequence_name (str) – Target sequence

	Returns:

	identities – Dataframe with pairwise sequence identities

	Return type:

	pd.DataFrame

See also

calc_identity, calc_pairwise_identity_all

Notes

Calculates sequence identity as descripted for calc_identity:

\[\text{seqid} = \frac{\text{matches}}
{\text{length}(\text{sequence1})}\]

	
calc_coverage(sequence_name_1: str, sequence_name_2: str) → float

	Calculation of coverage of sequence 2 to sequence 1 in the alignment.

	Parameters:

	
	sequence_name_1 (str) – Sequence pair to calculate coverage for

	sequence_name_2 (str) – Sequence pair to calculate coverage for

	Returns:

	coverage – Coverage of sequence 2 to sequence 1

	Return type:

	float

See also

calc_coverage_target, calc_pairwise_coverage_all

Notes

Coverage in this context means how many of the residues in sequences 1
are assigned a residue in sequence 2. This is useful for evaluating
potential templates, because a low sequence identity (as implemented in
homelette) could be caused either by a lot of residues not being
aligned at all, or a lot of residues being aligned but not with
identical residues.

\[\text{coverage} = \frac{\text{aligned residues}}
{\text{length}(\text{sequence1})}\]

Examples

Gaps and mismatches are not treated equally.

>>> aln = hm.Alignment(None)
>>> aln.sequences = {
... 'seq1': hm.alignment.Sequence('seq1', 'AAAACCCCDDDD'),
... 'seq2': hm.alignment.Sequence('seq2', 'AAAAEEEEDDDD'),
... 'seq3': hm.alignment.Sequence('seq3', 'AAAA----DDDD')
... }
>>> aln.calc_coverage('seq1', 'seq2')
100.0
>>> aln.calc_coverage('seq1', 'seq3')
66.67

Normalization happens for the length of sequence 1, so the order of
sequences matters.

>>> aln = hm.Alignment(None)
>>> aln.sequences = {
... 'seq1': hm.alignment.Sequence('seq1', 'AAAACCCCDDDD'),
... 'seq2': hm.alignment.Sequence('seq3', 'AAAA----DDDD')
... }
>>> aln.calc_coverage('seq1', 'seq2')
66.67
>>> aln.calc_coverage('seq2', 'seq1')
100.0

	
calc_coverage_target(sequence_name: str) → Type[pandas.DataFrame]

	Calculate coverage of all sequences in the alignment to specified
target sequence.

	Parameters:

	sequence_name (str) – Target sequence

	Returns:

	coverages – Dataframe with pairwise coverage

	Return type:

	pd.DataFrame

See also

calc_coverage, calc_pairwise_coverage_all

Notes

Calculates coverage as described for calc_coverage:

\[\text{coverage} = \frac{\text{aligned residues}}
{\text{length}(\text{sequence1})}\]

	
calc_pairwise_coverage_all() → Type[pandas.DataFrame]

	Calculate coverage between all sequences in the alignment.

	Returns:

	coverages – Dataframe with pairwise coverage

	Return type:

	pd.DataFrame

See also

calc_coverage, calc_coverage_target

Notes

Calculates coverage as described for calc_coverage:

\[\text{coverage} = \frac{\text{aligned residues}}
{\text{length}(\text{sequence1})}\]

	
class homelette.alignment.Sequence(name: str, sequence: str, **kwargs)

	Bases: object

Class that contains individual sequences and miscellaneous information
about them.

	Parameters:

	
	name (str) – Identifier of the sequence

	sequence (str) – Sequence in 1 letter amino acid code

	**kwargs – Annotations, for acceptable keys see Sequence.annotate()

	Variables:

	
	name (str) – Identifier of the sequence

	sequence (str) – Sequence in 1 letter amino acid code

	annotation (dict) – Collection of annotation for this sequence

Notes

See Sequence.annotate() for more information on the annotation of
sequences.

	
annotate(**kwargs: str)

	Change annotation for sequence object.

Keywords not specified in the Notes section will be ignored.

	Parameters:

	kwargs (str) – Annotations. For acceptible values, see Notes.

	Return type:

	None

Notes

Annotations are important for MODELLER in order to properly process
alignment in PIR format. The following annotations are supported and
can be modified.

	annotation

	explanation

	seq_type

	Specification whether sequence should be treated
as a template (set to ‘structure’) or as a target
(set to ‘sequence’)

	pdb_code

	PDB code corresponding to sequence (if available)

	begin_res

	Residue number for the first residue of the
sequence in the corresponing PDB file

	begin_chain

	Chain identifier for the first residue of the
sequence in the corresponding PDB file

	end_res

	Residue number for the last residue of the
sequence in the corresponding PDB file

	end_chain

	Chain identifier for the last residue of the
sequence in the corresponding PDB file

	prot_name

	Protein name, optional

	prot_source

	Protein source, optional

	resolution

	Resolution of PDB structure, optional

	R_factor

	R-factor of PDB structure, optional

Different types of annotations are required, depending whether a target
or a template is annotated. For targets, it is sufficient to seq the
seq_type to ‘sequence’. For templates, it is required by MODELLER
that seq_type and pdb_code are annotated. begin_res, begin_chain,
end_res and end_chain are recommended. The rest can be left unannoted.

Examples

Annotation for a target sequence.

>>> target = hm.alignment.Sequence(name = 'target', sequence =
... 'TARGET')
>>> target.annotation
{'seq_type': '', 'pdb_code': '', 'begin_res': '', 'begin_chain': '',
'end_res': '', 'end_chain': '', 'prot_name': '', 'prot_source': '',
'resolution': '', 'r_factor': ''}
>>> target.annotate(seq_type = 'sequence')
>>> target.annotation
{'seq_type': 'sequence', 'pdb_code': '', 'begin_res': '',
'begin_chain': '', 'end_res': '', 'end_chain': '', 'prot_name': '',
'prot_source': '', 'resolution': '', 'r_factor': ''}

Annotation for a template structure.

>>> template = hm.alignment.Sequence(name = 'template', sequence =
... 'TEMPLATE')
>>> template.annotation
{'seq_type': '', 'pdb_code': '', 'begin_res': '', 'begin_chain': '',
'end_res': '', 'end_chain': '', 'prot_name': '', 'prot_source': '',
'resolution': '', 'r_factor': ''}
>>> template.annotate(seq_type = 'structure', pdb_code = 'TMPL',
... begin_res = '1', begin_chain = 'A', end_res = '8', end_chain =
... 'A')
>>> template.annotation
{'seq_type': 'structure', 'pdb_code': 'TMPL', 'begin_res': '1',
'begin_chain': 'A', 'end_res': '8', 'end_chain': 'A', 'prot_name': '',
'prot_source': '', 'resolution': '', 'r_factor': ''}

	
get_annotation_pir() → str

	Return annotation in the colon-separated format expected from the PIR
alignment format used by MODELLER.

	Returns:

	Annotation in PIR format

	Return type:

	str

Examples

>>> template = hm.alignment.Sequence(name = 'template', sequence =
... 'TEMPLATE', seq_type = 'structure', pdb_code = 'TMPL',
... begin_res = '1', begin_chain = 'A', end_res = '8', end_chain =
... 'A')
>>> template.get_annotation_pir()
'structure:TMPL:1:A:8:A::::'

	
get_annotation_print() → None

	Print annotation to console

	Return type:

	None

Examples

>>> template = hm.alignment.Sequence(name = 'template', sequence =
... 'TEMPLATE', seq_type = 'structure', pdb_code = 'TMPL',
... begin_res = '1', begin_chain = 'A', end_res = '8', end_chain =
... 'A')
>>> template.get_annotation_print()
Sequence Type structure
PDB ID TMPL
Start Residue 1
Start Chain A
End Residue 8
End Chain A
Protein Name
Protein Source
Resolution
R-Factor

	
get_gaps() → tuple

	Find gap positions in sequence

	Returns:

	Positions of gaps in sequence

	Return type:

	tuple

Examples

>>> seq = hm.alignment.Sequence(name = 'seq', sequence = 'SEQ-UEN--CE')
>>> seq.get_gaps()
(3, 7, 8)

	
remove_gaps(remove_all: bool = False, positions: Optional[Iterable[int]] = None) → None

	Remove gaps from the sequence.

Gaps in the alignment are symbolized by ‘-’. Removal can either happen
at specific or all positions. Indexing for specific positions is
zero-based and checked before removal (raises Warning if the attempted
removal of a non-gap position is detected)

	Parameters:

	
	remove_all (bool) – Remove all gaps (default False)

	positions (iterable) – Positions to remove (zero-based indexing)

	Return type:

	None

	Warns:

	UserWarning – Specified position is not a gap

Examples

Example 1: remove all

>>> seq = hm.alignment.Sequence(name = 'seq', sequence = 'SEQ-UEN--CE')
>>> seq.remove_gaps(remove_all = True)
>>> seq.sequence
'SEQUENCE'

Example 2: selective removal

>>> seq = hm.alignment.Sequence(name = 'seq', sequence = 'SEQ-UEN--CE')
>>> seq.remove_gaps(positions = (7, 8))
>>> seq.sequence
'SEQ-UENCE'

	
class homelette.alignment.AlignmentGenerator(sequence: str, target: str = 'target', template_location: str = './templates/')

	Bases: ABC

Parent class for the auto-generation of alignments and template selection
based on sequence input.

	Parameters:

	
	sequence (str) – Target sequence in 1 letter amino acid code.

	target (str) – The name of the target sequence (default “target”). If longer than 14
characters, will be truncated.

	template_location (str) – Directory where processed templates will be stored (default
“./templates/”).

	Variables:

	
	alignment (Alignment) – The alignment.

	target_seq (str) – The target sequence.

	target (str) – The name of the target sequence.

	template_location (str) – Directory where processed templates will be stored.

	state – Dictionary describing the state of the AlignmentGenerator object

	Return type:

	None

	
abstract get_suggestion()

	Generate suggestion for templates and alignment

	
classmethod from_fasta(fasta_file: str, template_location: str = './templates/') → AlignmentGenerator

	Generates an instance of the AlignemntGenerator with the first sequence
in the fasta file.

	Parameters:

	
	fasta_file (str) – Fasta file from which the first sequence will be read.

	template_location (str) – Directory where processed templates will be stored (default
“./templates/”).

	Return type:

	AlignmentGenerator

	Raises:

	ValueError – Fasta file not properly formatted

	
show_suggestion(get_metadata: bool = False) → Type[pandas.DataFrame]

	Shows which templates have been suggested by the AlignmentGenerator, as
well as some useful statistics (sequence identity, coverage).

	Parameters:

	get_metadata (bool) – Retrieve additional metadata (experimental method, resolution,
structure title) from the RCSB.

	Returns:

	suggestion – DataFrame with calculated sequence identity and sequence coverage
for target

	Return type:

	pd.DataFrame

	Raises:

	RuntimeError – Alignment has not been generated yet

See also

Alignment.calc_identity, Alignment.calc_coverage

Notes

The standard output lists the templates in the alignment and shows both
coverage and sequence identity to the target sequence. The templates
are ordered by sequence identity.

In addition, the experimental method (Xray, NMR or Electron
Microscopy), the resolution (if applicable) and the title of the
template structure can be retrieved from the RCSB. Retrieving metadata
from the PDB requires a working internet connecction.

	
select_templates(templates: Iterable) → None

	Select templates from suggested templates by identifier.

	Parameters:

	templates (iterable) – The selected templates as an interable.

	Return type:

	None

	Raises:

	RuntimeError – Alignment has not been generated yet

	
get_pdbs(pdb_format: str = 'auto', verbose: bool = True) → None

	Downloads and processes templates present in alignment.

	Parameters:

	
	pdb_format (str) – Format of PDB identifiers in alignment (default auto)

	verbose (bool) – Explain what operations are performed

	Raises:

	
	RuntimeError – Alignment has not been generated yet

	ValueError – PDB format could not be guessed

Notes

pdb_format tells the function how to parse the template identifiers in
the alignment:

	auto: Automatic guess for pdb_format

	entry: Sequences are named only be their PDB identifier (i.e. 4G0N)

	entity: Sequences are named in the format PDBID_ENTITY (i.e. 4G0N_1)

	instance: Sequences are named in the format PDBID_CHAIN (i.e. 4G0N_A)

Please make sure that all templates follow one naming convention, and
that there are no sequences in the alignment that violate the naming
convention (except the target sequence).

During the template processing, all hetatms will be remove from the
template, as well as all other chains. All chains will be renamed to
“A” and the residue number will be set to 1 on the first residue. The
corresponding annotations are automatically made in the alignment
object.

	
initialize_task(task_name: ~typing.Optional[str] = None, overwrite: bool = False, task_class: ~homelette.organization.Task = <class 'homelette.organization.Task'>) → Task

	Initialize a homelette Task object for model generation and evaluation.

	Parameters:

	
	task_name (str) – The name of the task to initialize. If None, initialize as
models_{target}.

	overwrite (bool) – Whether to overwrite the task directory if a directory of the same
name already exists (default False).

	task_class (Task) – The class to initialize the Task with. This makes it possible to
define custom child classes of Task and construct them from this
function (default Task)

	Return type:

	Task

	Raises:

	RuntimeError – Alignment has not been generated or templates have not been
 downloaded and processed.

	
class homelette.alignment.AlignmentGenerator_pdb(sequence: str, target: str = 'target', template_location: str = './templates/')

	Bases: AlignmentGenerator

Identification of templates using the RCSB search API, generation of
alignment using Clustal Omega and download and processing of template
structures.

	Parameters:

	
	sequence (str) – Target sequence in 1 letter amino acid code.

	target (str) – The name of the target sequence (default “target”). If longer than 14
characters, will be truncated.

	template_location (str) – Directory where processed templates will be stored (default
“./templates/”).

	Variables:

	
	alignment (Alignment) – The alignment.

	target_seq (str) – The target sequence.

	target (str) – The name of the target sequence.

	template_location (str) – Directory where processed templates will be stored.

	state – Dictionary describing the state of the AlignmentGenerator object

	Return type:

	None

Notes

The AlignmentGenerator uses the RCSB Search API [1] to identify potential
template structures given the target sequence using MMseq2 [2]. The
sequences of the potentially downloaded and locally aligned using Clustal
Omega [3] [4].

References

[1]
Rose, Y., Duarte, J. M., Lowe, R., Segura, J., Bi, C., Bhikadiya,
C., Chen, L., Rose, A. S., Bittrich, S., Burley, S. K., & Westbrook, J.
D. (2021). RCSB Protein Data Bank: Architectural Advances Towards
Integrated Searching and Efficient Access to Macromolecular Structure
Data from the PDB Archive. Journal of Molecular Biology, 433(11),
166704. https://doi.org/10.1016/J.JMB.2020.11.003

[2]
Steinegger, M., & Söding, J. (2017). MMseqs2 enables sensitive
protein sequence searching for the analysis of massive data sets.
Nature Biotechnology 2017 35:11, 35(11), 1026–1028.
https://doi.org/10.1038/nbt.3988

[3]
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K.,
Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.
D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality
protein multiple sequence alignments using Clustal Omega. Molecular
Systems Biology, 7(1), 539. https://doi.org/10.1038/MSB.2011.75

[4]
Sievers, F., & Higgins, D. G. (2018). Clustal Omega for making
accurate alignments of many protein sequences. Protein Science, 27(1),
135–145. https://doi.org/10.1002/PRO.3290

	
get_suggestion(seq_id_cutoff: float = 0.5, min_length: int = 30, max_results: int = 50, xray_only: bool = True, verbose: bool = True) → None

	Identifies potential templates, retrieves their sequences and aligns
them locally using Clustal Omega.

	Parameters:

	
	seq_id_cutoff (float) – The sequence identity cutoff for the identification of template
structures. Templates below this threshold will be ignored (default
0.5).

	min_length (int) – The minimum length of template sequence to be included in the
results (default 30 amino acids).

	max_results (int) – The number of results returned (default 50).

	xray_only (bool) – Only consider templates structures generated with X-ray
crystallography (default True).

	verbose (bool) – Explain what is done (default True).

	Return type:

	None

	Raises:

	RuntimeError – Alignment already generated.

	
classmethod from_fasta(fasta_file: str, template_location: str = './templates/') → AlignmentGenerator

	Generates an instance of the AlignemntGenerator with the first sequence
in the fasta file.

	Parameters:

	
	fasta_file (str) – Fasta file from which the first sequence will be read.

	template_location (str) – Directory where processed templates will be stored (default
“./templates/”).

	Return type:

	AlignmentGenerator

	Raises:

	ValueError – Fasta file not properly formatted

	
get_pdbs(pdb_format: str = 'auto', verbose: bool = True) → None

	Downloads and processes templates present in alignment.

	Parameters:

	
	pdb_format (str) – Format of PDB identifiers in alignment (default auto)

	verbose (bool) – Explain what operations are performed

	Raises:

	
	RuntimeError – Alignment has not been generated yet

	ValueError – PDB format could not be guessed

Notes

pdb_format tells the function how to parse the template identifiers in
the alignment:

	auto: Automatic guess for pdb_format

	entry: Sequences are named only be their PDB identifier (i.e. 4G0N)

	entity: Sequences are named in the format PDBID_ENTITY (i.e. 4G0N_1)

	instance: Sequences are named in the format PDBID_CHAIN (i.e. 4G0N_A)

Please make sure that all templates follow one naming convention, and
that there are no sequences in the alignment that violate the naming
convention (except the target sequence).

During the template processing, all hetatms will be remove from the
template, as well as all other chains. All chains will be renamed to
“A” and the residue number will be set to 1 on the first residue. The
corresponding annotations are automatically made in the alignment
object.

	
initialize_task(task_name: ~typing.Optional[str] = None, overwrite: bool = False, task_class: ~homelette.organization.Task = <class 'homelette.organization.Task'>) → Task

	Initialize a homelette Task object for model generation and evaluation.

	Parameters:

	
	task_name (str) – The name of the task to initialize. If None, initialize as
models_{target}.

	overwrite (bool) – Whether to overwrite the task directory if a directory of the same
name already exists (default False).

	task_class (Task) – The class to initialize the Task with. This makes it possible to
define custom child classes of Task and construct them from this
function (default Task)

	Return type:

	Task

	Raises:

	RuntimeError – Alignment has not been generated or templates have not been
 downloaded and processed.

	
select_templates(templates: Iterable) → None

	Select templates from suggested templates by identifier.

	Parameters:

	templates (iterable) – The selected templates as an interable.

	Return type:

	None

	Raises:

	RuntimeError – Alignment has not been generated yet

	
show_suggestion(get_metadata: bool = False) → Type[pandas.DataFrame]

	Shows which templates have been suggested by the AlignmentGenerator, as
well as some useful statistics (sequence identity, coverage).

	Parameters:

	get_metadata (bool) – Retrieve additional metadata (experimental method, resolution,
structure title) from the RCSB.

	Returns:

	suggestion – DataFrame with calculated sequence identity and sequence coverage
for target

	Return type:

	pd.DataFrame

	Raises:

	RuntimeError – Alignment has not been generated yet

See also

Alignment.calc_identity, Alignment.calc_coverage

Notes

The standard output lists the templates in the alignment and shows both
coverage and sequence identity to the target sequence. The templates
are ordered by sequence identity.

In addition, the experimental method (Xray, NMR or Electron
Microscopy), the resolution (if applicable) and the title of the
template structure can be retrieved from the RCSB. Retrieving metadata
from the PDB requires a working internet connecction.

	
class homelette.alignment.AlignmentGenerator_hhblits(sequence: str, target: str = 'target', template_location: str = './templates/')

	Bases: AlignmentGenerator

Identification of templates using hhblits to search a local PDB database,
generation of alignment by combining pairwise alignments of target and
template together.

	Parameters:

	
	sequence (str) – Target sequence in 1 letter amino acid code.

	target (str) – The name of the target sequence (default “target”). If longer than 14
characters, will be truncated.

	template_location (str) – Directory where processed templates will be stored (default
“./templates/”).

	Variables:

	
	alignment (Alignment) – The alignment.

	target_seq (str) – The target sequence.

	target (str) – The name of the target sequence.

	template_location (str) – Directory where processed templates will be stored.

	state – Dictionary describing the state of the AlignmentGenerator object.

	Return type:

	None

Notes

HHblits from the HHsuite [5] is used to query the databases. The resulting
pairwise sequence alignments of template to target are combined using the
target sequence as the master sequence. The resulting alignment is
therefore, strictly speaking, not a proper multiple sequence alignment.
However, all information from the pairwise alignments is preserved, and for
homology modelling, the alignments of templates among each others do not
have any influence.

References

[5]
Sievers, F., & Higgins, D. G. (2018). Clustal Omega for making
accurate alignments of many protein sequences. Protein Science, 27(1),
135–145. https://doi.org/10.1002/PRO.3290

	
get_suggestion(database_dir: str = './databases/', use_uniref: bool = False, evalue_cutoff: float = 0.001, iterations: int = 2, n_threads: int = 2, neffmax: float = 10.0, verbose: bool = True) → None

	Use HHblits to identify template structures and create a multiple
sequence alignment by combination of pairwise alignments on target
sequence.

	Parameters:

	
	database_dir (str) – The directory where the pdb70 (and the UniRef30) database are
stored (default ./databases/).

	use_uniref (bool) – Use UniRef30 to create a MSA before querying the pdb70 database
(default False). This leads to better results, however it takes
longer and requires the UniRef30 database on your system.

	evalue_cutoff (float) – E-value cutoff for inclusion in result alignment (default 0.001)

	iterations (int) – Number of iterations when querying the pdb70 database.

	n_threads (int) – Number of threads when querying the pdb70 (or UniRef30) database
(default 2).

	neffmax (float) – The neffmax value used when querying the pdb70 database
(default 10.0).

	verbose (bool) – Explain which operations are performed (default True).

	Return type:

	None

	Raises:

	RuntimeError – Alignment has already been generated.

Notes

This function expects “hhblits” to be installed and in the path. In
addition, the pdb70 database needs to be downloaded and extracted in
the database_dir. The files need to be called “pdb70_*” for hhblits to
correctly find the database. If UniRef30 is used to create a
pre-alignment for better results, the UniRef30 database needs to be
downloaded and extracted in the database_dir. The files need to be
called “UniRef30_*”.

For more information on neffmax, please check the hhblits
documentation.

If UniRef30 is used to generate a prealignment, then hhblits will be
called for one iteration with standard parameters.

	
classmethod from_fasta(fasta_file: str, template_location: str = './templates/') → AlignmentGenerator

	Generates an instance of the AlignemntGenerator with the first sequence
in the fasta file.

	Parameters:

	
	fasta_file (str) – Fasta file from which the first sequence will be read.

	template_location (str) – Directory where processed templates will be stored (default
“./templates/”).

	Return type:

	AlignmentGenerator

	Raises:

	ValueError – Fasta file not properly formatted

	
get_pdbs(pdb_format: str = 'auto', verbose: bool = True) → None

	Downloads and processes templates present in alignment.

	Parameters:

	
	pdb_format (str) – Format of PDB identifiers in alignment (default auto)

	verbose (bool) – Explain what operations are performed

	Raises:

	
	RuntimeError – Alignment has not been generated yet

	ValueError – PDB format could not be guessed

Notes

pdb_format tells the function how to parse the template identifiers in
the alignment:

	auto: Automatic guess for pdb_format

	entry: Sequences are named only be their PDB identifier (i.e. 4G0N)

	entity: Sequences are named in the format PDBID_ENTITY (i.e. 4G0N_1)

	instance: Sequences are named in the format PDBID_CHAIN (i.e. 4G0N_A)

Please make sure that all templates follow one naming convention, and
that there are no sequences in the alignment that violate the naming
convention (except the target sequence).

During the template processing, all hetatms will be remove from the
template, as well as all other chains. All chains will be renamed to
“A” and the residue number will be set to 1 on the first residue. The
corresponding annotations are automatically made in the alignment
object.

	
initialize_task(task_name: ~typing.Optional[str] = None, overwrite: bool = False, task_class: ~homelette.organization.Task = <class 'homelette.organization.Task'>) → Task

	Initialize a homelette Task object for model generation and evaluation.

	Parameters:

	
	task_name (str) – The name of the task to initialize. If None, initialize as
models_{target}.

	overwrite (bool) – Whether to overwrite the task directory if a directory of the same
name already exists (default False).

	task_class (Task) – The class to initialize the Task with. This makes it possible to
define custom child classes of Task and construct them from this
function (default Task)

	Return type:

	Task

	Raises:

	RuntimeError – Alignment has not been generated or templates have not been
 downloaded and processed.

	
select_templates(templates: Iterable) → None

	Select templates from suggested templates by identifier.

	Parameters:

	templates (iterable) – The selected templates as an interable.

	Return type:

	None

	Raises:

	RuntimeError – Alignment has not been generated yet

	
show_suggestion(get_metadata: bool = False) → Type[pandas.DataFrame]

	Shows which templates have been suggested by the AlignmentGenerator, as
well as some useful statistics (sequence identity, coverage).

	Parameters:

	get_metadata (bool) – Retrieve additional metadata (experimental method, resolution,
structure title) from the RCSB.

	Returns:

	suggestion – DataFrame with calculated sequence identity and sequence coverage
for target

	Return type:

	pd.DataFrame

	Raises:

	RuntimeError – Alignment has not been generated yet

See also

Alignment.calc_identity, Alignment.calc_coverage

Notes

The standard output lists the templates in the alignment and shows both
coverage and sequence identity to the target sequence. The templates
are ordered by sequence identity.

In addition, the experimental method (Xray, NMR or Electron
Microscopy), the resolution (if applicable) and the title of the
template structure can be retrieved from the RCSB. Retrieving metadata
from the PDB requires a working internet connecction.

	
class homelette.alignment.AlignmentGenerator_from_aln(alignment_file: str, target: str, template_location: str = './templates/', file_format: str = 'fasta')

	Bases: AlignmentGenerator

Reads an alignment from file into the AlignmentGenerator workflow.

	Parameters:

	
	alignment_file (str) – The file to read the alignment from.

	target (str) – The name of the target sequence in the alignment.

	template_location (str) – Directory where processed templates will be stored (default
‘./templates/’).

	file_format (str, optional) – The format of the alignment file. Can be ‘fasta’ or ‘pir’ (default
‘fasta’).

	Variables:

	
	alignment (Alignment) – The alignment.

	target_seq (str) – The target sequence.

	target (str) – The name of the target sequence.

	template_location (str) – Directory where processed templates will be stored.

	state (dict) – Dictionary describing the state of the AlignmentGenerator object.

	Return type:

	None

Notes

Useful for making use of the PDB download and processing functions that
come with the AlignmentGenerator classes.

	
get_suggestion()

	Not implemented, since alignment is read from file on initialization.

	Raises:

	NotImplementedError –

	
from_fasta(*args, **kwargs)

	Not implemented, since alignment is read from file on initialization.

	Raises:

	NotImplementedError –

	
get_pdbs(pdb_format: str = 'auto', verbose: bool = True) → None

	Downloads and processes templates present in alignment.

	Parameters:

	
	pdb_format (str) – Format of PDB identifiers in alignment (default auto)

	verbose (bool) – Explain what operations are performed

	Raises:

	
	RuntimeError – Alignment has not been generated yet

	ValueError – PDB format could not be guessed

Notes

pdb_format tells the function how to parse the template identifiers in
the alignment:

	auto: Automatic guess for pdb_format

	entry: Sequences are named only be their PDB identifier (i.e. 4G0N)

	entity: Sequences are named in the format PDBID_ENTITY (i.e. 4G0N_1)

	instance: Sequences are named in the format PDBID_CHAIN (i.e. 4G0N_A)

Please make sure that all templates follow one naming convention, and
that there are no sequences in the alignment that violate the naming
convention (except the target sequence).

During the template processing, all hetatms will be remove from the
template, as well as all other chains. All chains will be renamed to
“A” and the residue number will be set to 1 on the first residue. The
corresponding annotations are automatically made in the alignment
object.

	
initialize_task(task_name: ~typing.Optional[str] = None, overwrite: bool = False, task_class: ~homelette.organization.Task = <class 'homelette.organization.Task'>) → Task

	Initialize a homelette Task object for model generation and evaluation.

	Parameters:

	
	task_name (str) – The name of the task to initialize. If None, initialize as
models_{target}.

	overwrite (bool) – Whether to overwrite the task directory if a directory of the same
name already exists (default False).

	task_class (Task) – The class to initialize the Task with. This makes it possible to
define custom child classes of Task and construct them from this
function (default Task)

	Return type:

	Task

	Raises:

	RuntimeError – Alignment has not been generated or templates have not been
 downloaded and processed.

	
select_templates(templates: Iterable) → None

	Select templates from suggested templates by identifier.

	Parameters:

	templates (iterable) – The selected templates as an interable.

	Return type:

	None

	Raises:

	RuntimeError – Alignment has not been generated yet

	
show_suggestion(get_metadata: bool = False) → Type[pandas.DataFrame]

	Shows which templates have been suggested by the AlignmentGenerator, as
well as some useful statistics (sequence identity, coverage).

	Parameters:

	get_metadata (bool) – Retrieve additional metadata (experimental method, resolution,
structure title) from the RCSB.

	Returns:

	suggestion – DataFrame with calculated sequence identity and sequence coverage
for target

	Return type:

	pd.DataFrame

	Raises:

	RuntimeError – Alignment has not been generated yet

See also

Alignment.calc_identity, Alignment.calc_coverage

Notes

The standard output lists the templates in the alignment and shows both
coverage and sequence identity to the target sequence. The templates
are ordered by sequence identity.

In addition, the experimental method (Xray, NMR or Electron
Microscopy), the resolution (if applicable) and the title of the
template structure can be retrieved from the RCSB. Retrieving metadata
from the PDB requires a working internet connecction.

	
homelette.alignment.assemble_complex_aln(*args: Type[Alignment], names: dict) → Type[Alignment]

	Assemble complex alignments compatible with MODELLER from individual
alignments.

	Parameters:

	
	*args (Alignment) – The input alignments

	names (dict) – Dictionary instructing how sequences in the different alignment objects
are supposed to be arranged in the complex alignment. The keys are the
names of the sequences in the output alignments. The values are
iterables of the sequence names from the input alignments in the order
they are supposed to appaer in the output alignment. Any value that can
not be found in the alignment signals that this position in the complex
alignment should be filled with gaps.

	Returns:

	Assembled complex alignment

	Return type:

	Alignment

Examples

>>> aln1 = hm.Alignment(None)
>>> aln1.sequences = {
... 'seq1_1': hm.alignment.Sequence('seq1_1', 'HELLO'),
... 'seq2_1': hm.alignment.Sequence('seq2_1', 'H---I'),
... 'seq3_1': hm.alignment.Sequence('seq3_1', '-HI--')
... }
>>> aln2 = hm.Alignment(None)
>>> aln2.sequences = {
... 'seq2_2': hm.alignment.Sequence('seq2_2', 'KITTY'),
... 'seq1_2': hm.alignment.Sequence('seq1_2', 'WORLD')
... }
>>> names = {'seq1': ('seq1_1', 'seq1_2'),
... 'seq2': ('seq2_1', 'seq2_2'),
... 'seq3': ('seq3_1', 'gaps')
... }
>>> aln_assembled = hm.alignment.assemble_complex_aln(
... aln1, aln2, names=names)
>>> aln_assembled.print_clustal()
seq1 HELLO/WORLD
seq2 H---I/KITTY
seq3 -HI--/-----

 homelette.routines

homelette.routines

The homelette.routines submodule contains classes for model generation.
Routines are the building blocks that are used to generate homology models.

Currently, a number of pre-implemented routines based on MODELLER, altMOD
and ProMod3 are available. It is possible to implement custom routines for
model generation and use them in the homelette framework.

Tutorials

The basics of generating homology models with pre-implemented modelling
routines are presented in Tutorial 2.
Complex modelling with homelette is introduced in
Tutorial 6.
Implementing custom modelling routines is discussed in
Tutorial 4.
Assembling custom pipelines is discussed in Tutorial
7.

Classes

The following standard modelling routines are implemented:

Routine_automodel_default
Routine_automodel_slow
Routine_altmod_default
Routine_altmod_slow
Routine_promod3

Modelling routines for loop modelliing:

Routine_loopmodel_default
Routine_loopmodel_slow

Specifically for the modelling of complex structures, the following routines
are implemented:

Routine_complex_automodel_default
Routine_complex_automodel_slow
Routine_complex_altmod_default
Routine_complex_altmod_slow

	
class homelette.routines.Routine_automodel_default(alignment: Type[Alignment], target: str, templates: Iterable, tag: str, n_threads: int = 1, n_models: int = 1)

	Class for performing homology modelling using the automodel class from
modeller with a default parameter set.

	Parameters:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (Iterable) – The iterable containing the identifier(s) of the template(s) used
for the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used in model generation (default 1)

	n_models (int) – Number of models generated (default 1)

	Variables:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (Iterable) – The iterable containing the identifier(s) of the template(s) used for
the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used for model generation

	n_models (int) – Number of models generated

	routine (str) – The identifier associated with a specific routine

	models (list) – List of models generated by the execution of this routine

	Raises:

	ImportError – Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this
Routine object:

	n_models

	n_threads

The following modelling parameters are set for this class:

	modelling
parameter

	value

	model_class

	modeller.automodel.automodel

	library_schedule

	modeller.automodel.autosched.normal

	md_level

	modeller.automodel.refine.very_fast

	max_var_iterations

	200

	repeat_optmization

	1

	
generate_models() → None

	Generate models with the parameter set automodel_default.

	Return type:

	None

	
class homelette.routines.Routine_automodel_slow(alignment: Type[Alignment], target: str, templates: Iterable, tag: str, n_threads: int = 1, n_models: int = 1)

	Class for performing homology modelling using the automodel class from
modeller with a slow parameter set.

	Parameters:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (Iterable) – The iterable containing the identifier(s) of the template(s) used
for the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used in model generation

	n_models (int) – Number of models generated

	Variables:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (Iterable) – The iterable containing the identifier(s) of the template(s) used for
the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used for model generation

	n_models (int) – Number of models generated

	routine (str) – The identifier associated with a specific routine

	models (list) – List of models generated by the execution of this routine

	Raises:

	ImportError – Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this
Routine object:

	n_models

	n_threads

The following modelling parameters are set for this class:

	modelling
parameter

	value

	model_class

	modeller.automodel.automodel

	library_schedule

	modeller.automodel.autosched.slow

	md_level

	modeller.automodel.refine.very_slow

	max_var_iterations

	400

	repeat_optmization

	3

	
generate_models() → None

	Generate models with the parameter set automodel_slow.

	Return type:

	None

	
class homelette.routines.Routine_altmod_default(alignment: Type[Alignment], target: str, templates: Iterable, tag: str, n_threads: int = 1, n_models: int = 1)

	Class for performing homology modelling using the
Automodel_statistical_potential class from altmod with a default parameter
set.

	Parameters:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (iterable) – The iterable containing the identifier(s) of the template(s) used for
the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used in model generation

	n_models (int) – Number of models generated

	Variables:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (list) – The iterable containing the identifier(s) of the template(s) used for
the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used for model generation

	n_models (int) – Number of models generated

	routine (str) – The identifier associated with a specific routine

	models (list) – List of models generated by the execution of this routine

	Raises:

	ImportError – Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this
Routine object:

	n_models

	n_threads

The following modelling parameters are set for this class:

	modelling
parameter

	value

	model_class

	altmod.Automodel_statistical_potential

	library_schedule

	modeller.automodel.autosched.normal

	md_level

	modeller.automodel.refine.very_fast

	max_var_iterations

	200

	repeat_optmization

	1

Autmodel_statistical_potential uses the DOPE potential for model
refinement.

	
generate_models() → None

	Generate models with the parameter set altmod_default.

	Return type:

	None

	
class homelette.routines.Routine_altmod_slow(alignment: Type[Alignment], target: str, templates: Iterable, tag: str, n_threads: int = 1, n_models: int = 1)

	Class for performing homology modelling using the
Automodel_statistical_potential class from altmod with a slow parameter
set.

	Parameters:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (iterable) – The iterable containing the identifier(s) of the template(s) used for
the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used in model generation

	n_models (int) – Number of models generated

	Variables:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (list) – The iterable containing the identifier(s) of the template(s) used for
the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used for model generation

	n_models (int) – Number of models generated

	routine (str) – The identifier associated with a specific routine

	models (list) – List of models generated by the execution of this routine

	Raises:

	ImportError – Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this
Routine object:

	n_models

	n_threads

The following modelling parameters are set for this class:

	modelling
parameter

	value

	model_class

	altmod.Automodel_statistical_potential

	library_schedule

	modeller.automodel.autosched.slow

	md_level

	modeller.automodel.refine.very_slow

	max_var_iterations

	400

	repeat_optmization

	3

Autmodel_statistical_potential uses the DOPE potential for model
refinement.

	
generate_models() → None

	Generate models with the parameter set altmod_slow.

	Return type:

	None

	
class homelette.routines.Routine_promod3(alignment: Type[Alignment], target: str, templates: Iterable, tag: str)

	Class for performing homology modelling using the ProMod3 engine with
default parameters.

	Parameters:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (iterable) – The iterable containing the identifier of the template used for the
modelling

	Variables:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (iterable) – The iterable containing the identifier of the template used for the
modelling

	tag (str) – The identifier associated with a specific execution of the routine

	routine (str) – The identifier associated with this specific routine: promod3

	models (list) – List of models generated by the execution of this routine

	Raises:

	
	ImportError – Unable to import dependencies

	ValueError – Number of given templates is not 1

	
generate_models() → None

	Generate models with the ProMod3 engine with default parameters.

	Return type:

	None

	
class homelette.routines.Routine_loopmodel_default(alignment: Type[Alignment], target: str, templates: Iterable, tag: str, loop_selections: Iterable, n_models: int = 1, n_loop_models: int = 1)

	Class for performing homology loop modelling using the loopmodel class from
modeller with a default parameter set.

	Parameters:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (Iterable) – The iterable containing the identifier(s) of the template(s) used
for the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	loop_selections (Iterable) – Selection(s) with should be refined with loop modelling, in
modeller format (example: [[‘18:A’, ‘22:A’], [‘29:A’, ‘33:A’]])

	n_models (int) – Number of models generated (default 1)

	n_loop_models (int) – Number of loop models generated for each model (default 1)

	Variables:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (Iterable) – The iterable containing the identifier(s) of the template(s) used for
the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	loop_selections (Iterable) – Selection(s) with should be refined with loop modelling

	n_models (int) – Number of models generated

	n_loop_models (int) – Number of loop models generated for each model

	routine (str) – The identifier associated with a specific routine

	models (list) – List of models generated by the execution of this routine

	Raises:

	ImportError – Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this
Routine object:

	loop_selections

	n_models

	n_loop_models

The following modelling parameters are set for this class:

	modelling
parameter

	value

	model_class

	modeller.automodel.LoopModel

	library_schedule

	modeller.automodel.autosched.normal

	md_level

	modeller.automodel.refine.very_fast

	max_var_iterations

	200

	repeat_optmization

	1

	loop_library_schedule

	modeller.automodel.autosched.loop

	loop_md_level

	modeller.automodel.refine.slow

	loop_max_var_iterations

	200

	n_threads

	1

	
generate_models() → None

	Generate models with the parameter set loopmodel_default.

	Return type:

	None

	
class homelette.routines.Routine_loopmodel_slow(alignment: Type[Alignment], target: str, templates: Iterable, tag: str, loop_selections: Iterable, n_models: int = 1, n_loop_models: int = 1)

	Class for performing homology loop modelling using the loopmodel class from
modeller with a slow parameter set.

	Parameters:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (Iterable) – The iterable containing the identifier(s) of the template(s) used
for the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	loop_selections (Iterable) – Selection(s) with should be refined with loop modelling, in
modeller format (example: [[‘18:A’, ‘22:A’], [‘29:A’, ‘33:A’]])

	n_models (int) – Number of models generated (default 1)

	n_loop_models (int) – Number of loop models generated for each model (default 1)

	Variables:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (Iterable) – The iterable containing the identifier(s) of the template(s) used for
the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	loop_selections (Iterable) – Selection(s) with should be refined with loop modelling

	n_models (int) – Number of models generated

	n_loop_models (int) – Number of loop models generated for each model

	routine (str) – The identifier associated with a specific routine

	models (list) – List of models generated by the execution of this routine

	Raises:

	ImportError – Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this
Routine object:

	loop_selections

	n_models

	n_loop_models

The following modelling parameters are set for this class:

	modelling
parameter

	value

	model_class

	modeller.automodel.LoopModel

	library_schedule

	modeller.automodel.autosched.slow

	md_level

	modeller.automodel.refine.very_slow

	max_var_iterations

	400

	repeat_optmization

	3

	loop_library_schedule

	modeller.automodel.autosched.slow

	loop_md_level

	modeller.automodel.refine.very_slow

	loop_max_var_iterations

	400

	n_threads

	1

	
generate_models() → None

	Generate models with the parameter set loopmodel_slow.

	Return type:

	None

	
class homelette.routines.Routine_complex_automodel_default(alignment: Type[Alignment], target: str, templates: Iterable, tag: str, n_threads: int = 1, n_models: int = 1)

	Class for performing homology modelling of complexes using the automodel
class from modeller with a default parameter set.

	Parameters:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (Iterable) – The iterable containing the identifier(s) of the template(s) used
for the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used in model generation (default 1)

	n_models (int) – Number of models generated (default 1)

	Variables:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (Iterable) – The iterable containing the identifier(s) of the template(s) used for
the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used for model generation

	n_models (int) – Number of models generated

	routine (str) – The identifier associated with a specific routine

	models (list) – List of models generated by the execution of this routine

	Raises:

	ImportError – Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this
Routine object:

	n_models

	n_threads

The following modelling parameters are set for this class:

	modelling
parameter

	value

	model_class

	modeller.automodel.automodel

	library_schedule

	modeller.automodel.autosched.normal

	md_level

	modeller.automodel.refine.very_fast

	max_var_iterations

	200

	repeat_optmization

	1

	
generate_models() → None

	Generate complex models with the parameter set automodel_default.

	Return type:

	None

	
class homelette.routines.Routine_complex_automodel_slow(alignment: Type[Alignment], target: str, templates: Iterable, tag: str, n_threads: int = 1, n_models: int = 1)

	Class for performing homology modelling of complexes using the automodel
class from modeller with a slow parameter set.

	Parameters:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (Iterable) – The iterable containing the identifier(s) of the template(s) used
for the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used in model generation (default 1)

	n_models (int) – Number of models generated (default 1)

	Variables:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (Iterable) – The iterable containing the identifier(s) of the template(s) used for
the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used for model generation

	n_models (int) – Number of models generated

	routine (str) – The identifier associated with a specific routine

	models (list) – List of models generated by the execution of this routine

	Raises:

	ImportError – Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this
Routine object:

	n_models

	n_threads

The following modelling parameters are set for this class:

	modelling
parameter

	value

	model_class

	modeller.automodel.automodel

	library_schedule

	modeller.automodel.autosched.slow

	md_level

	modeller.automodel.refine.very_slow

	max_var_iterations

	400

	repeat_optmization

	3

	
generate_models() → None

	Generate complex models with the parameters set automodel_slow.

	Return type:

	None

	
class homelette.routines.Routine_complex_altmod_default(alignment: Type[Alignment], target: str, templates: Iterable, tag: str, n_threads: int = 1, n_models: int = 1)

	Class for performing homology modelling of complexes using the
Automodel_statistical_potential class from altmod with a default parameter
set.

	Parameters:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (iterable) – The iterable containing the identifier(s) of the template(s) used for
the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used in model generation

	n_models (int) – Number of models generated

	Variables:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (list) – The iterable containing the identifier(s) of the template(s) used for
the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used for model generation

	n_models (int) – Number of models generated

	routine (str) – The identifier associated with a specific routine

	models (list) – List of models generated by the execution of this routine

	Raises:

	ImportError – Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this
Routine object:

	n_models

	n_threads

The following modelling parameters are set for this class:

	modelling
parameter

	value

	model_class

	altmod.Automodel_statistical_potential

	library_schedule

	modeller.automodel.autosched.normal

	md_level

	modeller.automodel.refine.very_fast

	max_var_iterations

	200

	repeat_optmization

	1

Autmodel_statistical_potential uses the DOPE potential for model
refinement.

	
generate_models() → None

	Generate complex models with the parameter set altmod_default.

	Return type:

	None

	
class homelette.routines.Routine_complex_altmod_slow(alignment: Type[Alignment], target: str, templates: Iterable, tag: str, n_threads: int = 1, n_models: int = 1)

	Class for performing homology modelling of complexes using the
Automodel_statistical_potential class from altmod with a slow parameter
set.

	Parameters:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (iterable) – The iterable containing the identifier(s) of the template(s) used for
the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used in model generation

	n_models (int) – Number of models generated

	Variables:

	
	alignment (Alignment) – The alignment object that will be used for modelling

	target (str) – The identifier of the protein to model

	templates (list) – The iterable containing the identifier(s) of the template(s) used for
the modelling

	tag (str) – The identifier associated with a specific execution of the routine

	n_threads (int) – Number of threads used for model generation

	n_models (int) – Number of models generated

	routine (str) – The identifier associated with a specific routine

	models (list) – List of models generated by the execution of this routine

	Raises:

	ImportError – Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this
Routine object:

	n_models

	n_threads

The following modelling parameters are set for this class:

	modelling
parameter

	value

	model_class

	altmod.Automodel_statistical_potential

	library_schedule

	modeller.automodel.autosched.slow

	md_level

	modeller.automodel.refine.very_slow

	max_var_iterations

	400

	repeat_optmization

	3

Autmodel_statistical_potential uses the DOPE potential for model
refinement.

	
generate_models() → None

	Generate complex models with the parameter set altmod_slow.

	Return type:

	None

 homelette.evaluation

homelette.evaluation

The homelette.evaluation submodule contains different classes for
evaluating homology models.

It is possible to implement custom Evaluation building blocks and use them in
the homelette framework.

Tutorials

Working with model evaluations in homelette is discussed in detail in
Tutorial 3. Implementing custom evaluation
metrics is discussed in
Tutorial 4.
Assembling custom pipelines is discussed in Tutorial 7.

Classes

The following evaluation metrics are implemented:

Evaluation_dope
Evaluation_soap_protein
Evaluation_soap_pp
Evaluation_qmean4
Evaluation_qmean6
Evaluation_qmeandisco
Evaluation_mol_probity

	
class homelette.evaluation.Evaluation_dope(model: Type[Model], quiet: bool = False)

	Class for evaluating a model with DOPE score.

Will dump the following entries to the model.evaluation dictionary:

	dope

	dope_z_score

	Parameters:

	
	model (Model) – The model object to evaluate

	quiet (bool) – If True, will perform evaluation with suppressing stdout (default
False). Needs to be False for running it asynchronously, as done
when running Task.evaluate_models with multple cores

	Variables:

	
	model (Model) – The model object to evaluate

	output (dict) – Dictionary that all outputs will be dumped into

	Raises:

	ImportError – Unable to import dependencies

Notes

DOPE is a staticial potential for the evaluation of homology models [1].
For further information, please check the modeller documentation or the
associated publication.

References

[1]
Shen, M., & Sali, A. (2006). Statistical potential for assessment
and prediction of protein structures. Protein Science, 15(11),
2507–2524. https://doi.org/10.1110/ps.062416606

	
evaluate() → None

	Run DOPE evaluation. Automatically called on object initialization

	Return type:

	None

	
class homelette.evaluation.Evaluation_soap_protein(model: Type[Model], quiet: bool = False)

	Class for evaluating a model with the SOAP protein protential.

Will dump the following entries to the model.evaluation dictionary:

	soap_protein

	Parameters:

	
	model (Model) – The model object to evaluate

	quiet (bool) – If True, will perform evaluation with suppressing stdout (default
False). Needs to be False for running it asynchronously, as done when
running Task.evaluate_models with multple cores

	Variables:

	
	model (Model) – The model object to evaluate

	output (dict) – Dictionary that all outputs will be dumped into

	Raises:

	ImportError – Unable to import dependencies

Notes

SOAP is a statistical potential for evaluating homology models [2]. For
more information, please check the modeller and SOAP documentations or the
associated publication.

References

[2]
Dong, G. Q., Fan, H., Schneidman-Duhovny, D., Webb, B., Sali, A., &
Tramontano, A. (2013). Optimized atomic statistical potentials:
Assessment of protein interfaces and loops. Bioinformatics, 29(24),
3158–3166. https://doi.org/10.1093/bioinformatics/btt560

	
evaluate() → None

	Run SOAP protein evaluation. Automatically called on object
initialization

	Return type:

	None

	
class homelette.evaluation.Evaluation_soap_pp(model: Type[Model], quiet: bool = False)

	Class for evaluating a model with SOAP interaction potentials. This is used
for the evaluation of models of protein complexes.

Will dump the following entries to the model.evaluation dictionary:

	soap_pp_all

	soap_pp_atom

	soap_pp_pair

	Parameters:

	
	model (Model) – The model object to evaluate

	quiet (bool) – If True, will perform evaluation with suppressing stdout (default
False). Needs to be False for running it asynchronously, as done when
running Task.evaluate_models with multple cores

	Variables:

	
	model (Model) – The model object to evaluate

	output (dict) – Dictionary that all outputs will be dumped into

	Raises:

	ImportError – Unable to import dependencies

Notes

SOAP is a statistical potential for evaluating homology models [3]. For
more information, please check the modeller and SOAP documentations or the
associated publication.

References

[3]
Dong, G. Q., Fan, H., Schneidman-Duhovny, D., Webb, B., Sali, A., &
Tramontano, A. (2013). Optimized atomic statistical potentials:
Assessment of protein interfaces and loops. Bioinformatics, 29(24),
3158–3166. https://doi.org/10.1093/bioinformatics/btt560

	
evaluate() → None

	Run SOAP interaction evaluation. Automatically called on object
initialization

	Return type:

	None

	
class homelette.evaluation.Evaluation_qmean4(model: Type[Model], quiet: bool = False)

	Class for evaluating a model with the QMEAN4 potential.

Will dump the following entries to the model.evaluation dictionary:

	qmean4

	qmean4_z_score

	Parameters:

	
	model (Model) – The model object to evaluate.

	quiet (bool) – If True, will perform evaluation with suppressing stdout (default
False). Needs to be False for running it asynchronously, as done when
running Task.evaluate_models with multple cores

	Variables:

	
	model (Model) – The model object to evaluate

	output (dict) – Dictionary that all outputs will be dumped into

	Raises:

	ImportError – Unable to import dependencies

See also

Evaluation_qmean6, Evaluation_qmeandisco

Notes

QMEAN is a statistical potential for evaluating homology models [4] [5].

Briefly, QMEAN is a combination of different components. Four compoenents
(interaction, cbeta, packing and torsion) form the qmean4 score.

For more information, please check the QMEAN documentation or the
associated publications.

References

[4]
Benkert, P., Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A
comprehensive scoring function for model quality assessment. Proteins:
Structure, Function and Genetics, 71(1), 261–277.
https://doi.org/10.1002/prot.21715

[5]
Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the
estimation of the absolute quality of individual protein structure
models. Bioinformatics, 27(3), 343–350.
https://doi.org/10.1093/bioinformatics/btq662

	
evaluate() → None

	Run QMEAN4 protein evaluation. Automatically called on object
initialization
:rtype: None

	
class homelette.evaluation.Evaluation_qmean6(model: Type[Model], quiet: bool = False)

	Class for evaluating a model with the QMEAN6 potential.

Will dump the following entries to the model.evaluation dictionary:

	qmean6

	qmean6_disco

Requires the following valid entries in the model.info dictionary:

	accpro_file (.acc file)

	psipred_file (.horiz file)

	Parameters:

	
	model (Model) – The model object to evaluate.

	quiet (bool) – If True, will perform evaluation with suppressing stdout (default
False). Needs to be False for running it asynchronously, as done when
running Task.evaluate_models with multple cores

	Variables:

	
	model (Model) – The model object to evaluate

	output (dict) – Dictionary that all outputs will be dumped into

	Raises:

	ImportError – Unable to import dependencies

See also

Evaluation_qmean4, Evaluation_qmeandisco

Notes

QMEAN is a statistical potential for evaluating homology models [6] [7].

QMEAN6 is a combination of six different components (interaction, cbeta,
packing, torsion, ss_agreement, acc_agreement). It is an extension to the
QMEAN4 score, which additionally evaluates the agreement of the model to
secondary structur predictions from PSIPRED [8] and solvent accessiblity
predictions from ACCpro [9].

For more information, please check the QMEAN documentation or the
associated publications.

References

[6]
Benkert, P., Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A
comprehensive scoring function for model quality assessment. Proteins:
Structure, Function and Genetics, 71(1), 261–277.
https://doi.org/10.1002/prot.21715

[7]
Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the
estimation of the absolute quality of individual protein structure
models. Bioinformatics, 27(3), 343–350.
https://doi.org/10.1093/bioinformatics/btq662

[8]
Jones, D. T. (1999). Protein secondary structure prediction based on
position-specific scoring matrices. Journal of Molecular Biology,
292(2), 195–202. https://doi.org/10.1006/JMBI.1999.3091

[9]
Magnan, C. N., & Baldi, P. (2014). SSpro/ACCpro 5: almost perfect
prediction of protein secondary structure and relative solvent
accessibility using profiles, machine learning and structural
similarity. Bioinformatics, 30(18), 2592–2597.
https://doi.org/10.1093/BIOINFORMATICS/BTU352

	
evaluate() → None

	Run QMEAN6 protein evaluation. Automatically called on object
initialization

	Return type:

	None

	
class homelette.evaluation.Evaluation_qmeandisco(model: Type[Model], quiet: bool = False)

	Class for evaluating a model with the QMEAN DisCo potential.

Will dump the following entries to the model.evaluation dictionary:

	qmean6

	qmean6_z_score

	qmean_local_scores_avg

	qmean_local_scores_err

Requires the following valid entries in the model.info dictionary:

	accpro_file (.acc file)

	psipred_file (.horiz file)

	disco_file (generated by qmean.DisCoContainer.Save)

	Parameters:

	
	model (Model) – The model object to evaluate.

	quiet (bool) – If True, will perform evaluation with suppressing stdout (default
False). Needs to be False for running it asynchronously, as done when
running Task.evaluate_models with multple cores

	Variables:

	
	model (Model) – The model object to evaluate

	output (dict) – Dictionary that all outputs will be dumped into

	Raises:

	ImportError – Unable to import dependencies

See also

Evaluation_qmean4, Evaluation_qmean6

Notes

QMEAN is a statistical potential for evaluating homology models [10]
[11].

QMEAN DisCo is an extension of QMEAN by the inclusion of homology derived
DIStance COnstraints [12]. These distance contraints do not influence the
six component of the QMEAN6 score (interaction, cbeta, packing, torsion,
ss_agreement, acc_agreement), but only the local scores.

The distance contraints for the target have to be generated before and
saved to a file.

For more information, please check the QMEAN documentation or the
associated publications.

References

[10]
Benkert, P., Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A
comprehensive scoring function for model quality assessment. Proteins:
Structure, Function and Genetics, 71(1), 261–277.
https://doi.org/10.1002/prot.21715

[11]
Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the
estimation of the absolute quality of individual protein structure
models. Bioinformatics, 27(3), 343–350.
https://doi.org/10.1093/bioinformatics/btq662

[12]
Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, R., Haas, J.,
& Schwede, T. (2020). QMEANDisCo-distance constraints applied on model
quality estimation. Bioinformatics, 36(6), 1765–1771.
https://doi.org/10.1093/bioinformatics/btz828

	
evaluate() → None

	Run QMEAN DisCo protein evaluation. Automatically called on object
initialization

	Return type:

	None

	
class homelette.evaluation.Evaluation_mol_probity(model: Type[Model], quiet: bool = False)

	Class for evaluating a model with the MolProbity validation service.

Will dump the following entries to the model.evaluation dictionary:

	mp_score

	Parameters:

	
	model (Model) – The model object to evaluate

	quiet (bool) – If True, will perform evaluation with suppressing stdout (default
False). Needs to be False for running it asynchronously, as done when
running Task.evaluate_models with multple cores

	Variables:

	
	model (Model) – The model object to evaluate

	output (dict) – Dictionary that all outputs will be dumped into

Notes

Molprobity is a program that evaluates the quality of 3D structures of
proteins based on structural features [13] [14] [15]. For more
information, please check the MolProbity webpage or the associated
publications.

References

[13]
Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G.
J., Wang, X., Murray, L. W., Arendall, W. B., Snoeyink, J., Richardson,
J. S., & Richardson, D. C. (2007). MolProbity: all-atom contacts and
structure validation for proteins and nucleic acids. Nucleic Acids
Research, 35(suppl_2), W375–W383. https://doi.org/10.1093/NAR/GKM216

[14]
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A.,
Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., &
Richardson, D. C. (2010). MolProbity: All-atom structure validation for
macromolecular crystallography. Acta Crystallographica Section D:
Biological Crystallography, 66(1), 12–21.
https://doi.org/10.1107/S0907444909042073

[15]
Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G.,
Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J.,
Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J.,
Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C.
(2018). MolProbity: More and better reference data for improved all-atom
structure validation. Protein Science, 27(1), 293–315.
https://doi.org/10.1002/pro.3330

	
evaluate() → None

	Run MolProbity evaluation. Automatically called on object
initialization

	Return type:

	None

 homelette.pdb_io

homelette.pdb_io

The homelette.pdb_io submodule contains an object for parsing and
manipulating PDB files. There are several constructor function that can read
PDB files or download them from the internet.

Functions and classes

Functions and classes present in homelette.pdb_io are listed below:

PdbObject
read_pdb()
download_pdb()

	
homelette.pdb_io.read_pdb(file_name: str) → PdbObject

	Reads PDB from file.

	Parameters:

	file_name (str) – PDB file name

	Return type:

	PdbObject

Notes

If a PDB file with multiple MODELs is read, only the first model will be
conserved.

	
homelette.pdb_io.download_pdb(pdbid: str) → PdbObject

	Download PDB from the RCSB.

	Parameters:

	pdbid (str) – PDB identifier

	Return type:

	PdbObject

Notes

If a PDB file with multiple MODELs is read, only the first model will be
conserved.

	
class homelette.pdb_io.PdbObject(lines: Iterable)

	Object encapsulating functionality regarding the processing of PDB files

	Parameters:

	lines (Iterable) – The lines of the PDB

	Variables:

	lines – The lines of the PDB, filtered for ATOM and HETATM records

	Return type:

	None

See also

read_pdb, download_pdb

Notes

Please contruct instances of PdbObject using the constructor functions.

If a PDB file with multiple MODELs is read, only the first model will be
conserved.

	
write_pdb(file_name) → None

	Write PDB to file.

	Parameters:

	file_name (str) – The name of the file to write the PDB to.

	Return type:

	None

	
parse_to_pd() → pandas.DataFrame

	Parses PDB to pandas dataframe.

	Return type:

	pd.DataFrame

Notes

Information is extracted according to the PDB file specification
(version 3.30) and columns are named accordingly. See
https://www.wwpdb.org/documentation/file-format for more information.

	
get_sequence(ignore_missing: bool = True) → str

	Retrieve the 1-letter amino acid sequence of the PDB, grouped by
chain.

	Parameters:

	ignore_missing (bool) – Changes behaviour with regards to unmodelled residues. If True,
they will be ignored for generating the sequence (default). If
False, they will be represented in the sequence with the character
X.

	Returns:

	Amino acid sequence

	Return type:

	str

	
get_chains() → list

	Extract all chains present in the PDB.

	Return type:

	list

	
transform_extract_chain(chain) → PdbObject

	Extract chain from PDB.

	Parameters:

	chain (str) – The chain ID to be extracted.

	Return type:

	PdbObject

	
transform_renumber_residues(starting_res: int = 1) → PdbObject

	Renumber residues in PDB.

	Parameters:

	starting_res (int) – Residue number to start renumbering at (default 1)

	Return type:

	PdbObject

Notes

Missing residues in the PDB (i.e. unmodelled) will not be considered in
the renumbering. If multiple chains are present in the PDB, numbering
will be continued from one chain to the next one.

	
transform_change_chain_id(new_chain_id) → PdbObject

	Replace chain ID for every entry in PDB.

	Parameters:

	new_chain_id (str) – New chain ID.

	Return type:

	PdbObject

	
transform_remove_hetatm() → PdbObject

	Remove all HETATM entries from PDB.

	Return type:

	PdbObject

	
transform_filter_res_name(selection: Iterable, mode: str = 'out') → PdbObject

	Filter PDB by residue name.

	Parameters:

	
	selection (Iterable) – For which residue names to filter

	mode (str) – Filtering mode. If mode = “out”, the selection will be filtered out
(default). If mode = “in”, everything except the selection will be
filtered out.

	Return type:

	PdbObject

	
transform_filter_res_seq(lower: int, upper: int) → PdbObject

	Filter PDB by residue number.

	Parameters:

	
	lower (int) – Lower bound of range to filter with.

	upper (int) – Upper bound of range to filter with, inclusive.

	Return type:

	PdbObject

	
transform_concat(*others: PdbObject) → PdbObject

	Concat PDB with other PDBs.

	Parameters:

	*others ('PdbObject) – Any number of PDBs.

	Return type:

	PdbObject

 homelette Extensions

homelette Extensions

Extensions are homology modelling building blocks (model generation, model evaluation) that are developed by users and expand the homelette interface. homelette can and should be extended by custom Routines and Evaluations. We strongly encourage users to share extensions they themselves found useful with the community.

Using Extensions

Extensions are placed in the extension folder in the homelette package. The extension folder on your device can be found in the following way:

import homelette.extension as ext
print(ext.__file__)

After an extension has been placed in the extension folder, it can be used as such:

import homelette.extension.your_extension as ext_1

Submitting Extensions

Please contact us with a Pull Request on GitHub or via Email (philipp.junk@ucdconnect.ie) if you want to share your extension! Please make sure your extension is sufficiently annotated for others to use, in particular mentioning dependencies or other requirements.

Existing Extensions

The following extensions have already been implemented. They should be already included in the latest version of homelette. If not, they are available from our GitHub page [https://github.com/PhilippJunk/homelette/].

	FoldX Extension

 FoldX extension to homelette

FoldX extension to homelette

Philipp Junk, 2021

This extension contains evaluation metrics based on FoldX, a force field for
energy calculation and protein design (https://foldxsuite.crg.eu/) [1] [2].

[1]
Guerois, R., Nielsen, J. E., & Serrano, L. (2002). Predicting Changes in
the Stability of Proteins and Protein Complexes: A Study of More Than 1000
Mutations. Journal of Molecular Biology, 320(2), 369–387.
https://doi.org/10.1016/S0022-2836(02)00442-4

[2]
Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., &
Serrano, L. (2005). The FoldX web server: an online force field. Nucleic
Acids Research, 33(Web Server), W382–W388.
https://doi.org/10.1093/nar/gki387

Usage

import homelette.extension.extension_foldx as extension_foldx
help(extension_foldx.Evaluation_foldx_stability)

This extension expects FoldX to be installed and in your path.

Functions and classes

	Currently contains the following items:
	Evaluation_foldx_repairmodels
Evaluation_foldx_interaction
Evaluation_foldx_stability
Evaluation_foldx_alascan_buildmodels
Evaluation_foldx_alascan_interaction

	
class homelette.extension.extension_foldx.Evaluation_foldx_repairmodels(model, quiet=False)

	Creates a modified version of the PDB and runs RepairPDB on it

Will not dump an entry to the model.evaluation dictionary

	Parameters:

	
	model (Model) – The model object to evaluate

	quiet (bool) – If True, will perform evaluation with suppressing stdout (default
False). Needs to be False for running it asynchronously, as done
when running Task.evaluate_models with multple cores

	Variables:

	
	model (Model) – The model object to evaluate

	output (dict) – Dictionary that all outputs will be dumped into

Notes

Most PDBs work fine with FoldX. For a specific use case in which I was
working with GTP heteroatoms, I had to rename a few atoms to make the PDB
compliant with FoldX.

	
evaluate()

	Repairs models with FoldX. Automatically called on object
initialization

	Return type:

	None

	
class homelette.extension.extension_foldx.Evaluation_foldx_interaction(model, quiet=False)

	Calculates interaction energy with FoldX

Requires a protein-protein complex. Expects Evaluation_foldx_repairmodels
to have been performed beforehand.

Will dump the following entries to the model.evaluation dictionary:

	foldx_interaction

	Parameters:

	
	model (Model) – The model object to evaluate

	quiet (bool) – If True, will perform evaluation with suppressing stdout (default
False). Needs to be False for running it asynchronously, as done
when running Task.evaluate_models with multple cores

	Variables:

	
	model (Model) – The model object to evaluate

	output (dict) – Dictionary that all outputs will be dumped into

	
evaluate()

	Calculates protein interaction energy with FoldX. Automatically called
on object initialization.

	Return type:

	None

	
class homelette.extension.extension_foldx.Evaluation_foldx_stability(model, quiet=False)

	Calculate protein stability with FoldX

Expects Evaluation_foldx_repairmodels to have been performed beforehand.

Will dump the following entries to the model.evaluation dictionary:

	foldx_stability

	Parameters:

	
	model (Model) – The model object to evaluate

	quiet (bool) – If True, will perform evaluation with suppressing stdout (default
False). Needs to be False for running it asynchronously, as done
when running Task.evaluate_models with multple cores

	Variables:

	
	model (Model) – The model object to evaluate

	output (dict) – Dictionary that all outputs will be dumped into

	
evaluate()

	Calculates protein stability with FoldX. Automatically called on object
initialization.

	Return type:

	None

	
class homelette.extension.extension_foldx.Evaluation_foldx_alascan_buildmodels(model, quiet=False)

	Generates alanine point mutations for all positions in the given model
using FoldX. Automatically called on object initialization.

Expects Evaluation_foldx_repairmodels to have been performed beforehand.

Will not dump an entry to the model.evaluation dictionary.

	Parameters:

	
	model (Model) – The model object to evaluate

	quiet (bool) – If True, will perform evaluation with suppressing stdout (default
False). Needs to be False for running it asynchronously, as done
when running Task.evaluate_models with multple cores

	Variables:

	
	model (Model) – The model object to evaluate

	output (dict) – Dictionary that all outputs will be dumped into

See also

Evaluation_foldx_alascan_interaction

Notes

This Evaluation is very RAM intensive, so expect only to run 1 or 2 threads
ni parallel.

	
evaluate()

	Generates alanine point mutations for all positions in the given
model. Automatically called on object initialization.

	Return type:

	None

	
class homelette.extension.extension_foldx.Evaluation_foldx_alascan_interaction(model, quiet=False)

	Calculates protein interaction energy with FoldX for all alanine point
mutations generated by Evaluation_foldx_alascan_buildmodels.

Expects Evaluation_foldx_alascan_buildmodels to have been run before.

Will dump the following entry to the model.evaluation dictionary:

	
	foldx_alascan: Dictionary of all interaction energies for all alanine
	scan mutations.

	Parameters:

	
	model (Model) – The model object to evaluate

	quiet (bool) – If True, will perform evaluation with suppressing stdout (default
False). Needs to be False for running it asynchronously, as done
when running Task.evaluate_models with multple cores

	Variables:

	
	model (Model) – The model object to evaluate

	output (dict) – Dictionary that all outputs will be dumped into

See also

Evaluation_foldx_alascan_buildmodels

	
evaluate()

	Calculates protein interaction energy with FoldX for all alanine point
mutations generated by Evaluation_foldx_alascan_buildmodels.

	Return type:

	None

 Python Module Index

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 homelette	

 	
 	
 homelette.alignment	

 	
 	
 homelette.evaluation	

 	
 	
 homelette.extension.extension_foldx	

 	
 	
 homelette.organization	

 	
 	
 homelette.pdb_io	

 	
 	
 homelette.routines	

 Index

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | P
 | R
 | S
 | T
 | W

A

 	
 	Alignment (class in homelette.alignment)

 	AlignmentGenerator (class in homelette.alignment)

 	AlignmentGenerator_from_aln (class in homelette.alignment)

 	
 	AlignmentGenerator_hhblits (class in homelette.alignment)

 	AlignmentGenerator_pdb (class in homelette.alignment)

 	annotate() (homelette.alignment.Sequence method)

 	assemble_complex_aln() (in module homelette.alignment)

C

 	
 	calc_coverage() (homelette.alignment.Alignment method)

 	calc_coverage_target() (homelette.alignment.Alignment method)

 	calc_identity() (homelette.alignment.Alignment method)

 	
 	calc_identity_target() (homelette.alignment.Alignment method)

 	calc_pairwise_coverage_all() (homelette.alignment.Alignment method)

 	calc_pairwise_identity_all() (homelette.alignment.Alignment method)

D

 	
 	download_pdb() (in module homelette.pdb_io)

E

 	
 	evaluate() (homelette.evaluation.Evaluation_dope method)

 	(homelette.evaluation.Evaluation_mol_probity method)

 	(homelette.evaluation.Evaluation_qmean4 method)

 	(homelette.evaluation.Evaluation_qmean6 method)

 	(homelette.evaluation.Evaluation_qmeandisco method)

 	(homelette.evaluation.Evaluation_soap_pp method)

 	(homelette.evaluation.Evaluation_soap_protein method)

 	(homelette.extension.extension_foldx.Evaluation_foldx_alascan_buildmodels method)

 	(homelette.extension.extension_foldx.Evaluation_foldx_alascan_interaction method)

 	(homelette.extension.extension_foldx.Evaluation_foldx_interaction method)

 	(homelette.extension.extension_foldx.Evaluation_foldx_repairmodels method)

 	(homelette.extension.extension_foldx.Evaluation_foldx_stability method)

 	evaluate_models() (homelette.organization.Task method)

 	
 	Evaluation_dope (class in homelette.evaluation)

 	Evaluation_foldx_alascan_buildmodels (class in homelette.extension.extension_foldx)

 	Evaluation_foldx_alascan_interaction (class in homelette.extension.extension_foldx)

 	Evaluation_foldx_interaction (class in homelette.extension.extension_foldx)

 	Evaluation_foldx_repairmodels (class in homelette.extension.extension_foldx)

 	Evaluation_foldx_stability (class in homelette.extension.extension_foldx)

 	Evaluation_mol_probity (class in homelette.evaluation)

 	Evaluation_qmean4 (class in homelette.evaluation)

 	Evaluation_qmean6 (class in homelette.evaluation)

 	Evaluation_qmeandisco (class in homelette.evaluation)

 	Evaluation_soap_pp (class in homelette.evaluation)

 	Evaluation_soap_protein (class in homelette.evaluation)

 	execute_routine() (homelette.organization.Task method)

F

 	
 	from_fasta() (homelette.alignment.AlignmentGenerator class method)

 	(homelette.alignment.AlignmentGenerator_from_aln method)

 	(homelette.alignment.AlignmentGenerator_hhblits class method)

 	(homelette.alignment.AlignmentGenerator_pdb class method)

G

 	
 	generate_models() (homelette.routines.Routine_altmod_default method)

 	(homelette.routines.Routine_altmod_slow method)

 	(homelette.routines.Routine_automodel_default method)

 	(homelette.routines.Routine_automodel_slow method)

 	(homelette.routines.Routine_complex_altmod_default method)

 	(homelette.routines.Routine_complex_altmod_slow method)

 	(homelette.routines.Routine_complex_automodel_default method)

 	(homelette.routines.Routine_complex_automodel_slow method)

 	(homelette.routines.Routine_loopmodel_default method)

 	(homelette.routines.Routine_loopmodel_slow method)

 	(homelette.routines.Routine_promod3 method)

 	get_annotation_pir() (homelette.alignment.Sequence method)

 	get_annotation_print() (homelette.alignment.Sequence method)

 	
 	get_chains() (homelette.pdb_io.PdbObject method)

 	get_evaluation() (homelette.organization.Task method)

 	get_gaps() (homelette.alignment.Sequence method)

 	get_pdbs() (homelette.alignment.AlignmentGenerator method)

 	(homelette.alignment.AlignmentGenerator_from_aln method)

 	(homelette.alignment.AlignmentGenerator_hhblits method)

 	(homelette.alignment.AlignmentGenerator_pdb method)

 	get_sequence() (homelette.alignment.Alignment method)

 	(homelette.organization.Model method)

 	(homelette.pdb_io.PdbObject method)

 	get_suggestion() (homelette.alignment.AlignmentGenerator method)

 	(homelette.alignment.AlignmentGenerator_from_aln method)

 	(homelette.alignment.AlignmentGenerator_hhblits method)

 	(homelette.alignment.AlignmentGenerator_pdb method)

H

 	
 	
 homelette.alignment

 	module

 	
 homelette.evaluation

 	module

 	
 homelette.extension.extension_foldx

 	module

 	
 	
 homelette.organization

 	module

 	
 homelette.pdb_io

 	module

 	
 homelette.routines

 	module

I

 	
 	initialize_task() (homelette.alignment.AlignmentGenerator method)

 	(homelette.alignment.AlignmentGenerator_from_aln method)

 	(homelette.alignment.AlignmentGenerator_hhblits method)

 	(homelette.alignment.AlignmentGenerator_pdb method)

M

 	
 	Model (class in homelette.organization)

 	
 module

 	homelette.alignment

 	homelette.evaluation

 	homelette.extension.extension_foldx

 	homelette.organization

 	homelette.pdb_io

 	homelette.routines

P

 	
 	parse_pdb() (homelette.organization.Model method)

 	parse_to_pd() (homelette.pdb_io.PdbObject method)

 	
 	PdbObject (class in homelette.pdb_io)

 	print_clustal() (homelette.alignment.Alignment method)

R

 	
 	read_pdb() (in module homelette.pdb_io)

 	remove_gaps() (homelette.alignment.Sequence method)

 	remove_redundant_gaps() (homelette.alignment.Alignment method)

 	remove_sequence() (homelette.alignment.Alignment method)

 	rename() (homelette.organization.Model method)

 	rename_sequence() (homelette.alignment.Alignment method)

 	replace_sequence() (homelette.alignment.Alignment method)

 	Routine_altmod_default (class in homelette.routines)

 	Routine_altmod_slow (class in homelette.routines)

 	
 	Routine_automodel_default (class in homelette.routines)

 	Routine_automodel_slow (class in homelette.routines)

 	Routine_complex_altmod_default (class in homelette.routines)

 	Routine_complex_altmod_slow (class in homelette.routines)

 	Routine_complex_automodel_default (class in homelette.routines)

 	Routine_complex_automodel_slow (class in homelette.routines)

 	Routine_loopmodel_default (class in homelette.routines)

 	Routine_loopmodel_slow (class in homelette.routines)

 	Routine_promod3 (class in homelette.routines)

S

 	
 	select_sequences() (homelette.alignment.Alignment method)

 	select_templates() (homelette.alignment.AlignmentGenerator method)

 	(homelette.alignment.AlignmentGenerator_from_aln method)

 	(homelette.alignment.AlignmentGenerator_hhblits method)

 	(homelette.alignment.AlignmentGenerator_pdb method)

 	
 	Sequence (class in homelette.alignment)

 	show_suggestion() (homelette.alignment.AlignmentGenerator method)

 	(homelette.alignment.AlignmentGenerator_from_aln method)

 	(homelette.alignment.AlignmentGenerator_hhblits method)

 	(homelette.alignment.AlignmentGenerator_pdb method)

T

 	
 	Task (class in homelette.organization)

 	transform_change_chain_id() (homelette.pdb_io.PdbObject method)

 	transform_concat() (homelette.pdb_io.PdbObject method)

 	transform_extract_chain() (homelette.pdb_io.PdbObject method)

 	
 	transform_filter_res_name() (homelette.pdb_io.PdbObject method)

 	transform_filter_res_seq() (homelette.pdb_io.PdbObject method)

 	transform_remove_hetatm() (homelette.pdb_io.PdbObject method)

 	transform_renumber_residues() (homelette.pdb_io.PdbObject method)

W

 	
 	write_clustal() (homelette.alignment.Alignment method)

 	write_fasta() (homelette.alignment.Alignment method)

 	
 	write_pdb() (homelette.pdb_io.PdbObject method)

 	write_pir() (homelette.alignment.Alignment method)

_images/Tutorial7_AssemblingPipelines_25_1.png
Combined Score

140

120
80
60
40
20 Template
E 3NY5 [4GON

=
o
o

automodel_default automodel_slow
Routine

_images/logo.png
L\omeleﬁe

nav.xhtml

 Table of Contents

 		
 Welcome to homelette’s documentation!

 		
 Installation

 		
 homelette

 		
 Modelling and Evaluation Software

 		
 MODELLER

 		
 altMOD

 		
 ProMod3

 		
 QMEAN

 		
 SOAP potential

 		
 MolProbity

 		
 Alignment Software

 		
 Clustal Omega

 		
 HHSuite3

 		
 Databases for HHSuite3

 		
 Docker

 		
 Setting up the docker image

 		
 Accessing the docker image

 		
 Tutorial 1: Basics

 		
 Introduction

 		
 Alignment

 		
 Template Structures

 		
 Model Generation

 		
 Model Evaluation

 		
 Further Reading

 		
 References

 		
 Session Info

 		
 Tutorial 2: Model Generation

 		
 Introduction

 		
 Alignment

 		
 Model Generation using routines

 		
 Model Generation using Task and routines

 		
 Further Reading

 		
 References

 		
 Session Info

 		
 Tutorial 3: Model Evaluation

 		
 Introduction

 		
 Model Generation

 		
 Model Evaluation using evaluation

 		
 Model Evaluation using Task and evaluation

 		
 On the combination of different evaluation metrics

 		
 Further reading

 		
 References

 		
 Session Info

 		
 Tutorial 4: Extending homelette

 		
 Introduction

 		
 Alignment

 		
 Defining custom routines

 		
 Defining custom evaluations

 		
 Further reading

 		
 References

 		
 Session Info

 		
 Tutorial 5: Parallelization

 		
 Introduction

 		
 Alignment and Task setup

 		
 Parallel model generation

 		
 Parallel model evaluation

 		
 Further reading

 		
 References

 		
 Session Info

 		
 Tutorial 6: Complex Modelling

 		
 Introduction

 		
 Alignment

 		
 Modelling

 		
 Evaluation

 		
 Further reading

 		
 References

 		
 Session Info

 		
 Tutorial 7: Assembling Modelling Pipelines

 		
 Introduction

 		
 Alignment

 		
 Custom pipeline

 		
 Visualization

 		
 Further Reading

 		
 References

 		
 Session Info

 		
 Tutorial 8: Automatic Alignment Generation

 		
 Introduction

 		
 Method 1: Querying RCSB and Realignment of template sequences with Clusta Omega

 		
 Method 2: HHSuite

 		
 Method 3: Using pre-computed alignments

 		
 Implementing own methods

 		
 Further Reading

 		
 References

 		
 Session Info

 		
 Organization

 		
 Tutorials

 		
 Classes

 		
 Sequences and Alignments

 		
 Tutorials

 		
 Functions and classes

