homelette

Philipp Junk, Christina Kiel

Sep 27, 2023

CONTENTS

1 Setting up homelette 3
1.1 Installation e e e e e e e e e e e e e e e e 3
1.2 Docker e e e e e e 5
2 Tutorials 7
2.1 Tutorial 1: Basics o e e e e e e 7
2.2 Tutorial 2: Modelling 13
2.3 Tutorial 3: Evaluation e 22
2.4 Tutorial 4: Extending homelette e e 32
2.5 Tutorial 5: Parallelization e 39
2.6 Tutorial 6: Complex Modelling e 45
2.7 Tutorial 7: Assembling custom pipelineso Lo 52
2.8 Tutorial 8: Automatic Alignment Generation 62
3 API Documentation 75
3.1 homelette.organization. e 75
3.2 homelette.alignment e 78
3.3 homelette.routines @ . e 100
3.4 homelette.evaluation e 112
3.5 homelette.pdb_io e 118
4 Extensions 123
4.1 homelette EXtensions L e e e e e e e e e 123
5 Indices and tables 129
Python Module Index 131
Index 133

homelette

homelette is a Python package offering a unified interface to different software for generating and evaluating homol-
ogy models. This enables users to easily assemble custom homology modelling pipelines. homelette is extensively
documented, lightweight and easily extendable.

omelette

If you use homelette in your research, please cite the following article:

Philipp Junk, Christina Kiel, HOMELETTE: a unified interface to homology modelling software, Bioin-
formatics, 2021;, btab866, https://doi.org/10.1093/bioinformatics/btab866

CONTENTS 1

https://doi.org/10.1093/bioinformatics/btab866

homelette

2 CONTENTS

CHAPTER
ONE

SETTING UP HOMELETTE

This section explains how to set homelette up on your system. homelette is available on GitHub and PyPI. The easiest
option to work with homelette is to use a docker container that has all dependencies already installed.

1.1 Installation

While installing the homelette base package is easy, some of its dependencies are quite complicated to install. If you
just want to try out homelette, we would encourage you to start with our Docker image which has all these dependencies
already installed.

1.1.1 homelette

homelette is easily available through our GitHub page (GitHub homelette) or through PyPI.

python3 -m pip install homelette

Please be aware that homelette requires Python 3.6.12 or newer.

1.1.2 Modelling and Evaluation Software

homelette doesn’t have model generating or model evaluating capabilities on its own. Instead, it provides a unified
interface to other software with these capabilities.

None of the tools and packages listed here are “hard” dependencies in the way that homelette won’t work if you have
them not installed. Actually, you can still use homelette without any of these packages. However, none of the pre-
implemented building blocks would work that way. It is therefore strongly recommended that, in order to get the most
out of homelette, to install as many of these tools and packages.

Again, we want to mention that we have prepared a Docker image that contains all of these dependencies, and we
strongly recommend that you start there if you want to find out if homelette is useful for you.

https://github.com/PhilippJunk/homelette/

homelette

MODELLER

Installation instructions for MODELLER can be found here: Installation MODELLER. Requires a license key (freely
available for academic research) which can be requested here: License MODELLER.

altMOD

altMOD can be installed from here: GitHub altMOD. Please make sure that the altMOD directory is in your Python
path.

ProMod3

ProMod3 has to be compiled from source, instructions can be found here: Installation ProMod3. Main dependencies
are OpenMM (available through conda or from source) and OpenStructure (available here: Installation OpenStructure).

QMEAN

QMEAN has be compiled from source, instructions can be found here: GitLab QMEAN. Has the same dependencies
as ProMod3.

SOAP potential

While the code for evaluation with SOAP is part of MODELLER, some files for SOAP are not included in the standard
release and have to be downloaded separately. The files are available here Download SOAP.

Specifically, you need to have soap_protein_od.hdf5 available in your modlib directory. The modlib directory
is placed at /usr/lib/modellerXX_XX/modlib/ if installed with dpkg or at anaconda/envs/yourenv/lib/
modellerXX-XX/modlib/ if installed with conda. These paths might be different on your system.

MolProbity

Installation instructures for MolProbity are available here: Github MolProbity. Please make sure that after installation,
phenix.molprobity is in your path.

1.1.3 Alignment Software

homelette is, given a query sequence, to automatically search for potential templates and generate sequence alignments.
This requires additional software.

Clustal Omega

Clustal Omega is a light and powerful multiple sequence alignment tool. It can be obtained as source code or precom-
piled from here: Clustal Omega webpage. Please make sure that after installation, clustalo is in your path.

4 Chapter 1. Setting up homelette

https://salilab.org/modeller/download_installation.html
https://salilab.org/modeller/registration.html
https://github.com/pymodproject/altmod
https://openstructure.org/promod3/
https://openstructure.org/download/
https://git.scicore.unibas.ch/schwede/QMEAN/
https://salilab.org/SOAP/
https://github.com/rlabduke/MolProbity
http://www.clustal.org/omega/

homelette

HHSuite3

Installation instructions for HHSuite3 are available here: Github HHSuite. Please make sure that after installation,
hhblits is in your path.

Databases for HHSuite3

Information on how to obtain the databases is available here: Github HHSuite. The PDB70 database (~25 GB down-
load, ~65 GB extracted) is required for using HHSuite in homelette, while the UniRef30 database (50~ GB download,
~170 GB extracted) is optional. Please make sure that after downloading and extracting the databases that they are in
one folder and are named pdb70_* and UniRef30_*, respectively.

1.2 Docker

One of the best ways to share software and software environments in a reproducible way is using Docker. We have
prepared a way to set up a docker image containing homelette and all its dependencies.

Due to the way how MODELLER licenses need to be aquired for each individual user, a two step process to setting up
the docker image is required:

1. The template for the docker image that contains everything except a MODELLER license key will be pulled from
DockerHub.

2. With a valid MODELLER license key, a local image with all dependencies working will be generated.

Note: Due to the numerous dependencies installed in the Docker image, please be aware that the image is quite big
(~10 GB).

Note: The databases required for using HHSuite3 are not included in the docker container due to their size.

The following sections will explain how to set up and use the docker image.

1.2.1 Setting up the docker image

A bash script (construct_homelette_image.sh found in homelette/docker/) has been provided which auto-
matically pulls the latest version of the homelette_template image from DockerHub and then attempts to construct the
local homelette image with the given MODELLER license key. After downloading the script from Github, run

./construct_homelette_image.sh "YOUR MODELLERKEY HERE"

Warning: The local image created by this contains your MODELLLER license key. Similarly, as you would not
send your license key to others, please do not share this image with other people, including on DockerHub.

The script will fail and no local image will be constructed if the license key is not accepted by the MODELLER version
in the container.

1.2. Docker 5

https://github.com/soedinglab/hh-suite
https://github.com/soedinglab/hh-suite

homelette

1.2.2 Accessing the docker image

After constructing the local homelette docker image, you can access the docker image as every other as well.

docker run --rm -it homelette

However, to make access a bit simpler, we have written a bash script (homelete. sh found in homelette/docker/)
to provide different options and modes to access the docker image. There are four different modes available:

e ./homelette.sh -m tutorial: This opens an interactive Jupyter Lab version of the tutorials.

e ./homelette.sh -m jupyterlab: This opens an interactive Jupyter Lab session with access to homelette
and all dependencies.

e ./homelette.sh -m interacive: This opens an interactive Python interpreter session with access to home-
lette and all dependencies.

e ./homelette.sh -m script: This allows the user to execute a Python script in the Docker container.

In addition, the script has the ability to make a number of directories from the host machine available to the container.
Please check out . /homelette.sh -h for more details. All containers generated by this script will be removed after
termination.

6 Chapter 1. Setting up homelette

[17:

CHAPTER
TWO

TUTORIALS

We have prepared a series of 7 tutorials which will teach the interested user everything about using the homelette
package. This is a great place to get started with homelette.

For a more interactive experience, all tutorials are available as Jupyter Notebooks through our Docker container.

2.1 Tutorial 1: Basics

import homelette as hm

2.1.1 Introduction
Welcome to the first tutorial on how to use the homelette package. In this example, we will generate homology
models using both modeller [1,2] and ProMod3 [3,4] and then evaluate them using the DOPE score [5].

homelette is a Python package that delivers a unified interface to various homology modelling and model evaluation
software. It is also easily customizable and extendable. Through a series of 7 tutorials, you will learn how to work with
homelette as well as how to extend and adapt it to your specific needs.

In tutorial 1, you will learn how to:
* Import an alignment.
* Generate homology models using a predefined routine with modeller.
* Generate homology models using a predefined routine with ProMod3.
* Evaluate these models.

In this example, we will generate a protein structure for the RBD domain of ARAF. ARAF is a RAF kinase important
in MAPK signalling. As a template, we will choose a close relative of ARAF called BRAF, specifically the structure
with the PDB code 3NY5.

All files necessary for running this tutorial are already prepared and deposited in the following directory: homelette/
example/data/. If you execute this tutorial from homelette/example/, you don’t have to adapt any of the paths.

homelette comes with an extensive documentation. You can either check out our online documentation, compile a
local version of the documentation in homelette/docs/ or use the help() function in Python.

https://www.rcsb.org/structure/3NY5
https://homelette.readthedocs.io

[2]:

[3]:

[3]:

[4]:

homelette

2.1.2 Alignment

The basis for a good homology model is a good alignment between your target and your template(s). There are many
ways to generate alignments. Depending on the scope of your project, you might want to generate extensive, high-
quality multiple sequence alignments from annotated sequence libraries of your sequences of interest using specific
software such as t-coffee [6,7], or get a web service such as HH-Pred [8,9] to search for potential templates and align
them.

For this example, we have already provided an alignment for you.

homelette has its own Alignment class which is used to work with alignments. You can import alignments from
different file types, write alignments to different file types, select a subset of sequences, calculate sequence identity and
print the alignment to screen. For more information, please check out the documentation.

read in the alignment
aln = hm.Alignment('data/single/aln_1.fasta_aln')

print to screen to check alignment
aln.print_clustal (line_wrap=70)

ARAF ---GTVKVYLPNKQRTVVTVRDGMSVYDSLDKALKVRGLNQDCCVVYRLIKGRKTVTAWDTATAPLDGEE
3NY5 HQKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRIQ---KKPIGWDTDISWLTGEE
ARAF LIVEVL------
3NY5 LHVEVLENVPLT

The template aligns nicely to our target. We can also check how much sequence identity these two sequences share:

calculate identity
aln.calc_identity_target('ARAF")

sequence_1 sequence_2 identity
0 ARAF 3NY5 57.53

The two sequences share a high amount of sequence identity, which is a good sign that our homology model might be
reliable.

modeller expects the sequences handed to it to be annotated to a minimal degree. It is usually a good idea to annotate
any template given to modeller in addition to the required PDB identifier with beginning and end residues and chains.
This can be done as such:

annotate the alignment
aln.get_sequence('ARAF') .annotate(seq_type = 'sequence')
aln.get_sequence('3NY5').annotate(seq_type = 'structure',
pdb_code = '3NY5',
begin_res = '1',
begin_chain = 'A'",
end_res = '81",
end_chain = 'A")

For more information on the sequence annotation, please check the documentation.

8 Chapter 2. Tutorials

http://www.tcoffee.org/Projects/tcoffee/documentation/
https://toolkit.tuebingen.mpg.de/tools/hhpred
https://homelette.readthedocs.io/
https://homelette.readthedocs.io/

[5]:

[6]:

[7]:

[8]:

homelette

2.1.3 Template Structures

For the sake of consistency, we recommend adjusting the residue count to start with residue 1 for each model and ignore
missing residues. A good tool for handling PDB structures is pdb-tools (available here) [10].

2.1.4 Model Generation

After importing our alignment, checking it manually, calculating sequence identities and annotating the sequences, as
well as taking about the templates we are using, we are now able to proceed with the model generation.

Before starting modelling and evaluation, we need to set up a Task object. The purpose of Task objects is to simplify
the interface to modelling and evaluation methods. Task objects are alignment-specific and target-specific.

set up task object

t = hm.Task(
task_name = 'Tutoriall',
target = 'ARAF',
alignment = aln,
overwrite = True)

Upon initialization, the task object will check if there is a folder in the current working directory that corresponds to
the given task_name. If no such folder is available, a new one will be created.

After initialization of the Task object, we can start with homology modelling. For this, we use the execute_routine
function of the task object, which applies the chosen homology modelling method with the chosen target, alignment
and template(s).

generate models with modeller
t.execute_routine(
tag = 'example_modeller',
routine = hm.routines.Routine_automodel_default,
templates = ['3NY5'],
template_location = './data/single')

It is possible to use the same Task object to create models from multiple different routine-template combinations.

generate models with promod3
t.execute_routine(
tag = 'example_promod3',
routine = hm.routines.Routine_promod3,
templates = ['3NY5'],
template_location = './data/single')

2.1.5 Model Evaluation

Similarly to modelling, model evaluation is performed through the evaluate_models function of the Task object.
This function is an easy interface to perform one or more evaluation methods on the models deposited in the task object.

perform evaluation
t.evaluate_models(hm.evaluation.Evaluation_dope)

The Task.get_evaluation function retrieves the evaluation for all models in the Task object as a pandas data frame.

2.1. Tutorial 1: Basics 9

https://github.com/haddocking/pdb-tools/

[9]:
[9]:

homelette

t.get_evaluation()

model tag routine dope \
® example_modeller_1.pdb example_modeller automodel_default -7274.457520
1 example_promod3_1.pdb example_promod3 promod3 -7642.868652
dope_z_score
0 -1.576995
1 -1.934412

For more details on the available evaluation methods please check out the documentation and the Tutorial 3.

2.1.6 Further Reading

Congratulations, you are now familiar with the basic functionality of homelette. You can now load an alignment, are
familiar with the Task object and can perform homology modelling and evaluate your models.

Please note that there are other, more advanced tutorials, which will teach you more about how to use homelette:
* Tutorial 2: Learn more about already implemented routines for homology modelling.
e Tutorial 3: Learn about the evaluation metrics available with homelette.

 Tutorial 4: Learn about extending homelette’s functionality by defining your own modelling routines and
evaluation metrics.

 Tutorial 5: Learn about how to use parallelization in order to generate and evaluate models more efficiently.
* Tutorial 6: Learn about modelling protein complexes.
 Tutorial 7: Learn about assembling custom pipelines.

 Tutorial 8: Learn about automated template identification, alignment generation and template processing.

2.1.7 References

[1] Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of
Molecular Biology, 234(3), 779-815. https://doi.org/10.1006/jmbi.1993.1626

[2] Webb, B., & Sali, A. (2016). Comparative Protein Structure Modeling Using MODELLER. Current Protocols in
Bioinformatics, 54(1), 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3

[3] Biasini, M., Schmidt, T., Bienert, S., Mariani, V., Studer, G., Haas, J., Johner, N., Schenk, A. D., Philippsen,
A., & Schwede, T. (2013). OpenStructure: An integrated software framework for computational structural bi-
ology. Acta Crystallographica Section D: Biological Crystallography, 69(5), 701-709. https://doi.org/10.1107/
S50907444913007051

[4] Studer, G., Tauriello, G., Bienert, S., Biasini, M., Johner, N., & Schwede, T. (2021). ProMod3—A versatile homol-
ogy modelling toolbox. PLOS Computational Biology, 17(1), e1008667. https://doi.org/10.1371/JOURNAL.PCBIL
1008667

[5] Shen, M., & Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein
Science, 15(11), 2507-2524. https://doi.org/10.1110/ps.062416606

[6] Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-coffee: A novel method for fast and accurate multiple
sequence alignment. Journal of Molecular Biology, 302(1), 205-217. https://doi.org/10.1006/jmbi.2000.4042

[7] Wallace, 1. M., O’Sullivan, O., Higgins, D. G., & Notredame, C. (2006). M-Coffee: Combining multiple sequence
alignment methods with T-Coffee. Nucleic Acids Research, 34(6), 1692—1699. https://doi.org/10.1093/nar/gkl091

10 Chapter 2. Tutorials

https://doi.org/10.1006/jmbi.1993.1626
https://doi.org/10.1002/cpbi.3
https://doi.org/10.1107/S0907444913007051
https://doi.org/10.1107/S0907444913007051
https://doi.org/10.1371/JOURNAL.PCBI.1008667
https://doi.org/10.1371/JOURNAL.PCBI.1008667
https://doi.org/10.1110/ps.062416606
https://doi.org/10.1006/jmbi.2000.4042
https://doi.org/10.1093/nar/gkl091

[10]:

homelette

[8] Soding, J., Biegert, A., & Lupas, A. N. (2005). The HHpred interactive server for protein homology detection and
structure prediction. Nucleic Acids Research, 33(suppl_2), W244-W?248. https://doi.org/10.1093/NAR/GKI408

[9] Zimmermann, L., Stephens, A., Nam, S. Z., Rau, D., Kiibler, J., Lozajic, M., Gabler, F., Soding, J., Lupas, A. N.,
& Alva, V. (2018). A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core.
Journal of Molecular Biology, 430(15), 2237-2243. https://doi.org/10.1016/J.JMB.2017.12.007

[10] Rodrigues, J. P. G. L. M., Teixeira, J. M. C., Trellet, M., & Bonvin, A. M. J. J. (2018). pdb-tools: a swiss army
knife for molecular structures. F1000Research 2018 7:1961, 7, 1961. https://doi.org/10.12688/f1000research.17456.1

2.1.8 Session Info

session info
import session_info
session_info.show(html = False, dependencies = True)

homelette
pandas
session_info

_
S U1 b
S w

PIL 7.0.0

anyio NA
asttokens NA
attr

babel

backcall

certifi

chardet
charset_normalizer
comm

cycler
cython_runtime
dateutil

debugpy

decorator
executing
fastjsonschema NA
idna
importlib_metadata NA
importlib_resources NA

o
N W
=]

.0

022.12.07

DD W W NSN =
R _, @ NN
N S D

=

s .
—_
=3
(=]

= AN =N
N D O
SN O DN

w
1S

ipykernel 6.21.3
ipython_genutils 0.2.0
jedi 0.18.2
jinja2 3.1.2
json5 NA
jsonschema 4.17.3
jupyter_events 0.6.3
jupyter_server 2.4.0
jupyterlab_server 2.20.0
kiwisolver 1.0.1
markupsafe 2.1.2
matplotlib 3.1.2

(continues on next page)

2.1. Tutorial 1: Basics 11

https://doi.org/10.1093/NAR/GKI408
https://doi.org/10.1016/J.JMB.2017.12.007
https://doi.org/10.12688/f1000research.17456.1

homelette

(continued from previous page)

modeller 10.4
more_itertools NA
mpl_toolkits NA
nbformat 5.7.3
numexpr 2.8.4
numpy 1.24.2
ost 2.3.1
packaging 20.3
parso 0.8.3
pexpect 4.8.0
pickleshare 0.7.5
pkg_resources NA
platformdirs 3.1.1
prometheus_client NA
promod3 3.2.1
prompt_toolkit 3.0.38
psutil 5.5.1
ptyprocess 0.7.0
pure_eval 0.2.2
pydev_ipython NA
pydevconsole NA
pydevd 2.9.5
pydevd_file_utils NA
pydevd_plugins NA
pydevd_tracing NA
pygments 2.14.0
pyparsing 2.4.6
pyrsistent NA
pythonjsonlogger NA
pytz 2022.7.1
gmean NA
requests 2.28.2
rfc3339_validator 0.1.4
rfc3986_validator 0.1.1
send2trash NA
sitecustomize NA

six 1.12.0
sniffio 1.3.0
stack_data 0.6.2
swig_runtime_data4 NA
tornado 6.2
traitlets 5.9.0
urllib3 1.26.15
wcwidth NA
websocket 1.5.1
yaml 6.0
zipp NA

zmq 25.0.1
IPython 8§.11.0
jupyter_client 8.0.3
jupyter_core 5.2.0

(continues on next page)

12 Chapter 2. Tutorials

[1]:

homelette

(continued from previous page)

jupyterlab
notebook

o W
vl o
w =

Python 3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0]
Linux-4.15.0-206-generic-x86_64-with-glibc2.29

Session information updated at 2023-03-15 23:34

2.2 Tutorial 2: Modelling

import os

import homelette as hm

2.2.1 Introduction

Welcome to the second tutorial for homelette. In this tutorial, we will further explore the already implemented method
to generate homology models.

Currently, the following software packages for generating homology models have been integrated in the homelette
homology modelling interface:

* modeller: A robust package for homology modelling with a long history which is widely used [1,2]

* altmod: A modification to the standard modeller modelling procedure that has been reported to increase the
quality of models [3]

e ProMod3: The modelling engine behind the popular SwissModel web platform [4,5]

Specifically, the following routines are implemented in homelette. For more details on the individual routines, please
check the documentation or their respective docstring.

e routines.Routine_automodel_default
* routines.Routine_automodel_slow

e routines.Routine_altmod_default

e routines.Routine_altmod_slow

e routines.Routine_promod3

In this example, we will generate models for the RBD domain of ARAF. ARAF is a RAF kinase important in MAPK
signalling. As a template, we will choose a close relative of ARAF called BRAF, specifically the structure with the
PDB code 3NY5.

All files necessary for running this tutorial are already prepared and deposited in the following directory: homelette/
example/data/. If you execute this tutorial from homelette/example/, you don’t have to adapt any of the paths.

homelette comes with an extensive documentation. You can either check out our online documentation, compile a
local version of the documentation in homelette/docs/ with sphinx or use the help() function in Python.

2.2. Tutorial 2: Modelling 13

https://www.rcsb.org/structure/3NY5
https://homelette.readthedocs.io/

[2]:

[3]:

[4]:

homelette

2.2.2 Alignment

For this tutorial, we will use the same alignment and template as for Tutorial 1.

read in the alignment
aln = hm.Alignment('data/single/aln_1.fasta_aln')

print to screen to check alignment
aln.print_clustal (line_wrap=70)

ARAF ---GTVKVYLPNKQRTVVTVRDGMSVYDSLDKALKVRGLNQDCCVVYRLIKGRKTVTAWDTATAPLDGEE
3NY5 HQKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRIQ---KKPIGWDTDISWLTGEE
ARAF LIVEVL------
3NY5 LHVEVLENVPLT

annotate the alignment
aln.get_sequence('ARAF') .annotate(seq_type = 'sequence')
aln.get_sequence('3NY5').annotate(seq_type = 'structure',
pdb_code = '3NY5',
begin_res = '1',
begin_chain = 'A',
end_res = '81",
end_chain = '"A")

2.2.3 Model Generation using routines

The building blocks in homelette that take care of model generation are called Routines. There is a number of pre-
defined routines, and it is also possible to construct custom routines (see Tutorial 4). Every routine in homelette
expects a number of identical arguments, while some can have a few optional ones as well.

?hm.routines.Routine_automodel_default

Init signature:
hm.routines.Routine_automodel_default(
alignment: Type[ForwardRef('Alignment')],
target: str,
templates: Iterable,
tag: str,
n_threads: int = 1,
n_models: int = 1,
) -> None
Docstring:
Class for performing homology modelling using the automodel class from
modeller with a default parameter set.

Parameters
alignment : Alignment
The alignment object that will be used for modelling

(continues on next page)

14 Chapter 2. Tutorials

homelette

(continued from previous page)

target : str
The identifier of the protein to model
templates : Iterable
The iterable containing the identifier(s) of the template(s) used
for the modelling
tag : str
The identifier associated with a specific execution of the routine
n_threads : int
Number of threads used in model generation (default 1)
n_models : int
Number of models generated (default 1)

Attributes
alignment : Alignment
The alignment object that will be used for modelling
target : str
The identifier of the protein to model
templates : Iterable
The iterable containing the identifier(s) of the template(s) used for
the modelling
tag : str
The identifier associated with a specific execution of the routine
n_threads : int
Number of threads used for model generation
n_models : int
Number of models generated
routine : str
The identifier associated with a specific routine
models : list
List of models generated by the execution of this routine

Raises

ImportError
Unable to import dependencies

The following modelling parameters can be set when initializing this
Routine object:

* n_models
* n_threads

The following modelling parameters are set for this class:
+ _______________________

"
| modelling |
| parameter |
+
I

+
| model_class

(continues on next page)

2.2. Tutorial 2: Modelling 15

[5]:

homelette

(continued from previous page)

o - - +
| library_schedule | modeller.automodel.autosched.normal |

e T T +

| md_level | modeller.automodel.refine.very_fast |

B et TP +

| max_var_iterations | 200

e o +

| repeat_optmization | 1

o e +

File: /usr/local/src/homelette-1.4/homelette/routines.py
Type: type

Subclasses:

The following arguments are required for all pre-defined routines:
e alignment: The alignment object used for modelling.
» target: The identifier of the target sequence in the alignment object

* templates: An iterable containing the identifier(s) of the templates for this modelling routine. homelette
expects that templates are uniquely identified by their identifier in the alignment and in the template PDB file(s).
Routines based on modeller work with one or multiple templates, whereas Routine_promod3 only accepts a
single template per run.

* tag: Each executed routine is given a tag which will be used to name the generated models.
In addition, pre-defined routines expect the template PDBs to be present in the current working directory.
The routine Routine_automodel_default has two optional arguments:

e n_models: the number of models that should be produced on this run, as routines based on modeller are able
to produce an arbitary number of models.

* n_threads: enable mulit-threading for the execution of this routine. For more information on parallelization in
homelette, please check out Tutorial 5.

While it is generally recommended to execute routines using Task objects (see next section), it is also possible to execute
them directly. For doing this, since the template file has to be in the curent working directory, we quickly change working
directory to a prepared directory where we can execute the routine (this code assumes that your working directory is
homelette/examples.

change directory

os.chdir('data/single")

print content of directory to screen

print('Files before modelling:\n' + ' '.join(os.listdir()) + '\n\n')

perform modelling
routine = hm.routines.Routine_automodel_default(
alignment=aln,
target="ARAF',
templates=['3NY5'],
tag="model ")
routine.generate_models()

print('Files after modelling:\n' + ' '.join(os.listdir()) + '\n')
(continues on next page)

16 Chapter 2. Tutorials

[6]:

[77:

homelette

(continued from previous page)

remove model
os.remove('model_1.pdb")

change back to tutorial directory
os.chdir('../..")

Files before modelling:
3NY5.pdb aln_1.fasta_aln 4GON.pdb

Files after modelling:
model_1.pdb 3NY5.pdb aln_1.fasta_aln 4GON.pdb

2.2.4 Model Generation using Task and routines

homelette has Task objects that allow for easier use of Routines and Evaluations (see also Tutorial 3). Task objects
help to direct and organize modelling pipelines. It is strongly recommended to use Task objects to execute routines
and evaluations.

For more information on Task objects, please check out the documentation or Tutorial 1.

set up task object

t = hm.Task(
task_name = 'Tutorial2',
target = 'ARAF',
alignment = aln,
overwrite = True)

Using the Task object, we can now begin to generate our models with different routines using the Task.
execute_routine method

?hm.Task.execute_routine

Signature:
hm.Task.execute_routine(
self,
tag: str,
routine: Type[ForwardRef('routines.Routine')],
templates: Iterable,
template_location: str = '.',

**kwargs,
) -> None
Docstring:

Generates homology models using a specified modelling routine

Parameters

tag : str
The identifier associated with this combination of routine and
template(s). Has to be unique between all routines executed by the

(continues on next page)

2.2. Tutorial 2: Modelling 17

https://homelette.readthedocs.io/

[8]:

homelette

(continued from previous page)

same task object

routine : Routine
The routine object used to generate the models

templates : list
The iterable containing the identifier(s) of the template(s) used
for model generation

template_location : str, optional
The location of the template PDB files. They should be named
according to their identifiers in the alignment (i.e. for a
sequence named "1WXN" to be used as a template, it is expected that
there will be a PDB file named "1WXN.pdb" in the specified template
location (default is current working directory)

**kwargs
Named parameters passed directly on to the Routine object when the
modelling is performed. Please check the documentation in order to
make sure that the parameters passed on are available with the
Routine object you intend to use

Returns

None

File: /usr/local/src/homelette-1.4/homelette/organization.py
Type: function

As we can see, Task.execute_routine expects a number of arguments from the user:

* tag: Each executed routine is given a tag which will be used to name the generated models. This is useful for
differentiating between different routines executed by the same Task, for example if different templates are used.

* routine: Here the user can set which routine will be used for generating the homology model(s), arguably the
most important setting.

e templates: An iterable containing the identifier(s) of the templates for this modelling routine. homelette
expects that templates are uniquely identified by their identifier(s) in the alignment and in the template location.

* template_location: The folder where the PDB file(s) used as template(s) are found.

We are generating some models with the pre-defined routines of homelette:

model generation with modeller
t.execute_routine(
tag = 'example_modeller',
routine = hm.routines.Routine_automodel_default,
templates = ['3NY5'],
template_location = './data/single")

model generation with altmod
t.execute_routine(
tag = 'example_altmod',
routine = hm.routines.Routine_altmod_default,
templates = ['3NY5'],
template_location = './data/single")

model generation with promod3

t.execute_routine(
(continues on next page)

18 Chapter 2. Tutorials

[9]:

[10]:
[10]:

homelette

(continued from previous page)

tag = 'example_promod3',

routine = hm.routines.Routine_promod3,
templates = ['3NY5'],
template_location = './data/single')

As mentioned before, some modelling routines have optional arguments, such as n_models for
Routine_autmodel_default. @ We can pass these optional arguments to Task.execute_routine which
passes them on the routine selected:

multiple model generation with altmod
t.execute_routine(
tag = 'example_modeller_more_models’,
routine = hm.routines.Routine_automodel_default,
templates = ['3NY5'],
template_location = './data/single’,
n_models = 10)

Models generated using Task objects are stored as Model objects in the Task:

t.models

[<homelette
<homelette
<homelette
<homelette
<homelette
<homelette
<homelette
<homelette
<homelette
<homelette
<homelette
<homelette
<homelette

.organization.
.organization.
.organization.
.organization.
.organization.
.organization.
.organization.
.organization.
.organization.
.organization.
.organization.
.organization.
.organization.

Model
Model
Model
Model
Model
Model
Model
Model
Model
Model
Model
Model
Model

at
at
at
at
at
at
at
at
at
at
at
at
at

0x7£421£7£9280>,
0x7£f421£7c£7£0>,
0x7£421£8£4370>,
0x7£f421£f8dfcald>,
0x7£421£8df2e0>,
0x7£421£8da2b0>,
0x7£421£8da400>,
0x7£f421£8da370>,
0x7£421£806220>,
0x7£421£806cd0O>,
0x7£421£806a00>,
0x7£421£806£10>,
0x7£421£806280>]

In conclusion, we have learned how to use a single Task object to generate models with different modelling routines.
We have also learned how to pass optional arguments on to the executed routines.

In this example, the target, the alignment and the templates were kept identical. Varying the templates would be straight
forward, under the condition that other templates are included in the alignment. For varying alignments and targets,
new Task objects would need to be created. This is a design choice that is meant to encourage users to try out different
routines or templates/template combinations. It is recommended when using different routines or multiple templates to
indicate this using the tag argument of Task.execute_routine (i.e. tag="automodel_3NY5'). Similarly, using a
single Task object for multiple targets or alignments is discouraged and we recommend to utilize multiple Task objects
for these modelling approaches.

2.2. Tutorial 2: Modelling 19

[11]:

homelette

2.2.5 Further Reading

You are now familiar with model generation in homelette.

Please note that there are other tutorials, which will teach you more about how to use homelette:
¢ Tutorial 1: Learn about the basics of homelette.
 Tutorial 3: Learn about the evaluation metrics available with homelette.

 Tutorial 4: Learn about extending homelette’s functionality by defining your own modelling routines and
evaluation metrics.

 Tutorial 5: Learn about how to use parallelization in order to generate and evaluate models more efficiently.
 Tutorial 6: Learn about modelling protein complexes.
¢ Tutorial 7: Learn about assembling custom pipelines.

 Tutorial 8: Learn about automated template identification, alignment generation and template processing.

2.2.6 References

[1] Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of
Molecular Biology, 234(3), 779-815. https://doi.org/10.1006/jmbi.1993.1626

[2] Webb, B., & Sali, A. (2016). Comparative Protein Structure Modeling Using MODELLER. Current Protocols in
Bioinformatics, 54(1), 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3

[3] Janson, G., Grottesi, A., Pietrosanto, M., Ausiello, G., Guarguaglini, G., & Paiardini, A. (2019). Revisiting the
“satisfaction of spatial restraints” approach of MODELLER for protein homology modeling. PLoS Computational
Biology, 15(12), e1007219. https://doi.org/10.1371/journal.pcbi.1007219

[4] Biasini, M., Schmidt, T., Bienert, S., Mariani, V., Studer, G., Haas, J., Johner, N., Schenk, A. D., Philippsen,
A., & Schwede, T. (2013). OpenStructure: An integrated software framework for computational structural bi-
ology. Acta Crystallographica Section D: Biological Crystallography, 69(5), 701-709. https://doi.org/10.1107/
S0907444913007051

[5] Studer, G., Tauriello, G., Bienert, S., Biasini, M., Johner, N., & Schwede, T. (2021). ProMod3—A versatile homol-
ogy modelling toolbox. PLOS Computational Biology, 17(1), e1008667. https://doi.org/10.1371/JOURNAL.PCBI.
1008667

2.2.7 Session Info

session info
import session_info
session_info.show(html = False, dependencies = True)

homelette 1.4
session_info 1.0.0
PIL 7.0.0
altmod NA
anyio NA
asttokens NA
attr 19.3.0

(continues on next page)

20 Chapter 2. Tutorials

https://doi.org/10.1006/jmbi.1993.1626
https://doi.org/10.1002/cpbi.3
https://doi.org/10.1371/journal.pcbi.1007219
https://doi.org/10.1107/S0907444913007051
https://doi.org/10.1107/S0907444913007051
https://doi.org/10.1371/JOURNAL.PCBI.1008667
https://doi.org/10.1371/JOURNAL.PCBI.1008667

homelette

babel

backcall

certifi

chardet
charset_normalizer
comm

cycler
cython_runtime
dateutil

debugpy

decorator
executing
fastjsonschema
idna
importlib_metadata

importlib_resources

ipykernel
ipython_genutils
jedi

jinja2

json5

jsonschema
jupyter_events
jupyter_server
jupyterlab_server
kiwisolver
markupsafe
matplotlib
modeller
more_itertools
mpl_toolkits
nbformat

numexpr

numpy

ost

packaging

pandas

parso

pexpect
pickleshare
pkg_resources
platformdirs
prometheus_client
promod3
prompt_toolkit
psutil
ptyprocess
pure_eval
pydev_ipython
pydevconsole
pydevd
pydevd_file_utils

[y
w

oo -
N

weoeeo
== NN
N D

= W N R NN D

= .
N

w N o N
_oe N W

A~ SR NN~ DNDUV
A~ - e .
N 0 0o v
P VY]
U S W W

w
[y
[y

(continued from previous page)

(continues on next page)

2.2. Tutorial 2: Modelling

21

[17:

homelette

pydevd_plugins
pydevd_tracing
pygments
pyparsing
pyrsistent
pythonjsonlogger
pytz

gmean

requests
rfc3339_validator
rfc3986_validator
send2trash
sitecustomize

six

sniffio
stack_data
swig_runtime_data4
tornado

traitlets

urllib3

wcwidth

websocket

yaml

zipp

zmq

IPython
jupyter_client
jupyter_core
jupyterlab
notebook

Python 3.8.10 (default, Nov 14 2022,
Linux-4.15.0-206-generic-x86_64-with-glibc2.29

Session information updated at 2023-03-15 23:35

2.3 Tutorial 3: Evaluation

NA

NA

2.14.0
2.4.6

import homelette as hm

12:59:47) [GCC 9.4.0]

(continued from previous page)

22

Chapter 2. Tutorials

[2]:

homelette

2.3.1 Introduction
Welcome to the third tutorial for homelette. In this tutorial, we will explore which evaluation metrics are implemented
in homelette and how to use them.

Model evaluation is an important step in any homology modelling procedure. In most practical scenarios, you will end
up with more than one possible model and have to decide which one is “best”. Obtaining multiple models can be the
result of trying out different templates or combinations of templates, different algorithms generating the models, or due
to using an algorithm which can generate multiple models.

The following evaluation metrics are implemented in homelette:
e evaluation.Evaluation_dope: DOPE score from modeller [1]
e evaluation.Evaluation_soap_protein: SOAP score from modeller for the evaluation of single proteins
(2]
e evaluation.Evaluation_soap_pp: SOAP score from modeller for the evaluation of protein complexes [2]
e evaluation.Evaluation_gmean4: QMEAN4 score [3,4]
e evaluation.Evaluation_gmean6: QMEANG score [3,4]
¢ evaluation.Evaluation_gmeandisco: QMEAN DisCo score [3,4,5]
e evaluation.Evaluation_mol_probity: MolProbity score for the structural evaluation of proteins [6,7,8]

All files necessary for running this tutorial are already prepared and deposited in the following directory: homelette/
example/data/. If you execute this tutorial from homelette/example/, you don’t have to adapt any of the paths.

homelette comes with an extensive documentation. You can either check out our online documentation, compile a
local version of the documentation in homelette/docs/ with sphinx or use the help () function in Python.

2.3.2 Model Generation

In order to have a few models to evaluate, we will briefly generate some models of ARAF as we have done in previous
tutorials (please check Tutorial 1 and Tutorial 2 for more information on this part).

get alignment
aln = hm.Alignment('data/single/aln_1.fasta_aln')

annotate the alignment
aln.get_sequence('ARAF') .annotate(

seq_type = 'sequence')
aln.get_sequence('3NY5'") .annotate(

seq_type = 'structure',

pdb_code = '3NY5',

begin_res = '1',

begin_chain = 'A",

end_res = '81"',

end_chain = 'A'")

initialize task object

t = hm.Task(
task_name = 'Tutorial3',
target = 'ARAF',
alignment = aln,
overwrite = True)

(continues on next page)

2.3. Tutorial 3: Evaluation 23

https://homelette.readthedocs.io/

[3]:

[3]:

[4]:
[4]:

[5]:

[5]:

[6]:

homelette

(continued from previous page)

generate models with modeller
t.execute_routine(
tag = 'modeller',
routine = hm.routines.Routine_automodel_default,
templates = ['3NY5'],
template_location = './data/single’,
n_models = 5)

generate models with altmod
t.execute_routine(
tag = 'altmod',
routine = hm.routines.Routine_altmod_default,
templates = ['3NY5'],
template_location = './data/single’,
n_models = 5)

We now have generated 10 models, 5 generated with modeller and another 5 generated with altmod.

2.3.3 Model Evaluation using evaluation

Similar to routines, evaluations can be executed on their own, although it is recommended to use an interface through
the Task object (see next section). For showcasing how an evaluation can be executed on its own, we will take one of
the previously generated models as an example:

example model
model = t.models[0]
model

<homelette.organization.Model at 0x7f7f681lae250>

Every Model object has an Model.evaluation attribute where information about the model and its evaluations are
collected:

model . evaluation

{'model’': 'modeller_1.pdb', 'tag': 'modeller', 'routine': 'automodel_default'}

After performing an evaluation, this dictionary will be updated with the results of the evaluation:

hm.evaluation.Evaluation_dope(model, quiet=True)
model . evaluation

{'model': 'modeller_1.pdb"',
'tag': 'modeller',
'routine': 'automodel_default',
'dope': -7216.8564453125,

'dope_z_score': -1.5211129532811163}

The interface to evaluations is relatively simple:

?hm.evaluation.Evaluation_dope

24 Chapter 2. Tutorials

homelette

Init signature:
hm.evaluation.Evaluation_dope(
model: Type[ForwardRef('Model')],
quiet: bool = False,
) -> None
Docstring:
Class for evaluating a model with DOPE score.

Will dump the following entries to the model.evaluation dictionary:

* dope
* dope_z_score

Parameters

model : Model
The model object to evaluate

quiet : bool
If True, will perform evaluation with suppressing stdout (default
False). Needs to be False for running it asynchronously, as done
when running Task.evaluate_models with multple cores

Attributes
model : Model
The model object to evaluate
output : dict
Dictionary that all outputs will be dumped into

Raises
ImportError
Unable to import dependencies

DOPE is a staticial potential for the evaluation of homology models [1]_.
For further information, please check the modeller documentation or the
associated publication.

References
[1] Shen, M., & Sali, A. (2006). Statistical potential for assessment
and prediction of protein structures. Protein Science, 15(11),
2507-2524. https://doi.org/10.1110/ps.062416606

File: /usr/local/src/homelette-1.4/homelette/evaluation.py
Type: type
Subclasses:

Evaluations take only two arguments: - model: A Model object - quiet: A boolean value determining whether any
output to the console should be suppressed.

Unlike routines, evaluations are executed as soon as the object is initialized.

2.3. Tutorial 3: Evaluation 25

[7]:

[8]:

[9]:
[9]:

homelette

2.3.4 Model Evaluation using Task and evaluation

Using the interface to evaluations that is implemented in Task objects has several advantages: it is possible to evaluate
multiple models with multiple evaluation metrics in one command. In addition, multi-threading can be enabled (see
Tutorial 5 for more details). The method to run evaluations with a Task object is called evaluate_models.

?hm.Task.evaluate_models

Signature:

hm.Task.evaluate_models(
self,
*args: Type[ForwardRef('evaluation.Evaluation')],
n_threads: int = 1,

) -> None

Docstring:

Evaluates models using one or multiple evaluation metrics

Parameters

*args: Evaluation
Evaluation objects that will be applied to the models

n_threads : int, optional
Number of threads used for model evaluation (default is 1, which
deactivates parallelization)

Returns

None

File: /usr/local/src/homelette-1.4/homelette/organization.py
Type: function

running dope and soap at the same time
t.evaluate_models(hm.evaluation.Evaluation_dope,
hm.evaluation.Evaluation_soap_protein)

After running evaluations, output of all Model.evaluation can be compiled to a pandas data frame as such:

t.get_evaluation()

model tag routine dope dope_z_score \
® modeller_1.pdb modeller automodel_default -7216.856445 -1.521113
1 modeller_2.pdb modeller automodel_default -7274.457520 -1.576995
2 modeller_3.pdb modeller automodel_default -7126.735352 -1.433681
3 modeller_4.pdb modeller automodel_default -7225.522461 -1.529520
4 modeller_5.pdb modeller automodel_default -7128.661621 -1.435550
5 altmod_1.pdb altmod altmod_default -8148.456055 -2.424912
6 altmod_2.pdb altmod altmod_default -8187.364258 -2.462659
7 altmod_3.pdb altmod altmod_default -8202.568359 -2.477409
8 altmod_4.pdb altmod altmod_default -8170.016602 -2.445829
9 altmod_5.pdb altmod altmod_default -8145.944336 -2.422475

soap_protein
0® -44167.968750
1 -45681.269531

(continues on next page)

26 Chapter 2. Tutorials

[10]:

[10]:

homelette

O 00 NO VT b WIN

2.3.5 On the combination of different evaluation metrics

-43398.992188
-42942.808594
-41418.894531
-53440.839844
-49991.304688
-53909.824219
-52208.402344
-50776.855469

(continued from previous page)

Oftentimes it is useful to use different metrics to evaluate models. However, that produces the problem of having mul-
tiple metrics to base a decision on. There are multiple solutions to this problem, all of them with their own advantages
and disadvantes. We want to mention the combination of z-scores of the different metrics and the combination of
metrics by borda count.

In the following, we show how to combine multiple scores to one borda score. In short, borda count is an agglomeration
of ranks in the different individual metrics to one score.

Note

Be careful because, for some metrics, lower values are better (DOPE, SOAP, MolProbity), but for others higher values
are better (QMEAN).

df = t.get_evaluation()

df

rank by dope and soap
df['rank_dope'] = df['dope'].rank()
df['rank_soap'] = df['soap_protein'].rank()

calculate points based on rank

n = df.shape[0]

df.drop(labels=['routine"',

"tag'], axis=1)

df['rank_dope']
df['rank_soap']

df['points_dope'] = n -
df['points_soap'] = n -
df

model dope
0 modeller_1.pdb -7216.856445
1 modeller_2.pdb -7274.457520
2 modeller_3.pdb -7126.735352
3 modeller_4.pdb -7225.522461
4 modeller_5.pdb -7128.661621
5 altmod_1.pdb -8148.456055
6 altmod_2.pdb -8187.364258
7 altmod_3.pdb -8202.568359
8 altmod_4.pdb -8170.016602
9 altmod_5.pdb -8145.944336

rank_soap points_dope

-1.
-1.
-1.
-1.
-1.
-2.
-2.
-2.
-2.
-2.

points_soap

dope_z_score

521113
576995
433681
529520
435550
424912
462659
477409
445829
422475

soap_protein rank_dope

-44167.
-45681.
-43398.
-42942.
-41418.
-53440.
-49991.
-53909.
-52208.
-50776.

968750
269531
992188
808594
894531
839844
304688
824219
402344
855469

8.

[e)]

U1 W E NSO

@D

\

(continues on next page)

2.3. Tutorial 3:

Evaluation

27

https://en.wikipedia.org/wiki/Borda_count

homelette

(continued from previous page)

O oo NOUVIhd WN =R
=
A W Rk N WO o N
@ oo
LT N O 0O~ W DN
@ oo
AN O UT oD~ NS~ W
@ oo @

[11]: # calculate borda score and borda rank
df['borda_score'] = df['points_dope'] + df['points_soap']
df['borda_rank'] = df['borda_score'].rank(ascending=False)

df = df.drop(labels=['rank_dope', 'rank_soap', 'points_dope', 'points_soap'], axis=1)
df.sort_values(by="'borda_rank')

[11]: model dope dope_z_score soap_protein borda_score \
7 altmod_3.pdb -8202.568359 -2.477409 -53909.824219 18.0
5 altmod_1.pdb -8148.456055 -2.424912 -53440.839844 14.0
8 altmod_4.pdb -8170.016602 -2.445829 -52208.402344 14.0
6 altmod_2.pdb -8187.364258 -2.462659 -49991.304688 13.0
9 altmod_5.pdb -8145.944336 -2.422475 -50776.855469 11.0
1 modeller_2.pdb -7274.457520 -1.576995 -45681.269531 8.0
® modeller_1.pdb -7216.856445 -1.521113 -44167.968750 5.0
3 modeller_4.pdb -7225.522461 -1.529520 -42942.808594 4.0
2 modeller_3.pdb -7126.735352 -1.433681 -43398.992188 2.0
4 modeller_5.pdb -7128.661621 -1.435550 -41418.894531 1.0

borda_rank
1.

BN Wk OO Ul N
O 00N VI NN
[— I — I — R — I — N — N — RV, BV, Y —)

—_
(=]

The model with the highest borda score or the lowest borda count is the best model according to the combination of
DOPE and SOAP scores.

28 Chapter 2. Tutorials

homelette

2.3.6 Further reading

You are now familiar with using the implemented evaluation features of homelette. For further reading, please
consider checking out the other tutorials:

 Tutorial 1: Learn about the basics of homelette.
 Tutorial 2: Learn more about already implemented routines for homology modelling.

* Tutorial 4: Learn about extending homelette’s functionality by defining your own modelling routines and
evaluation metrics.

 Tutorial 5: Learn about how to use parallelization in order to generate and evaluate models more efficiently.
 Tutorial 6: Learn about modelling protein complexes.
 Tutorial 7: Learn about assembling custom pipelines.

 Tutorial 8: Learn about automated template identification, alignment generation and template processing.

2.3.7 References

[1] Shen, M., & Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein
Science, 15(11), 2507-2524. https://doi.org/10.1110/ps.062416606

[2] Dong, G. Q., Fan, H., Schneidman-Duhovny, D., Webb, B., Sali, A., & Tramontano, A. (2013). Optimized atomic
statistical potentials: Assessment of protein interfaces and loops. Bioinformatics, 29(24), 3158-3166. https://doi.org/
10.1093/bioinformatics/btt560

[3] Benkert, P., Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model
quality assessment. Proteins: Structure, Function and Genetics, 71(1), 261-277. https://doi.org/10.1002/prot.21715

[4] Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein
structure models. Bioinformatics, 27(3), 343-350. https://doi.org/10.1093/bioinformatics/btq662

[5] Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, R., Haas, J., & Schwede, T. (2020). QMEANDisCo-
distance constraints applied on model quality estimation. Bioinformatics, 36(6), 1765—1771. https://doi.org/10.1093/
bioinformatics/btz828

[6] Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., Murray, L. W., Arendall, W. B.,
Snoeyink, J., Richardson, J. S., & Richardson, D. C. (2007). MolProbity: all-atom contacts and structure validation
for proteins and nucleic acids. Nucleic Acids Research, 35(suppl_2), W375-W383. https://doi.org/10.1093/NAR/
GKM216

[7] Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W.,
Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crys-
tallography. Acta Crystallographica Section D: Biological Crystallography, 66(1), 12-21. https://doi.org/10.1107/
S0907444909042073

[8] Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D.
A., Hintze, B. J., Chen, V. B, Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C.,
Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom
structure validation. Protein Science, 27(1), 293-315. https://doi.org/10.1002/pro.3330

2.3. Tutorial 3: Evaluation 29

https://doi.org/10.1110/ps.062416606
https://doi.org/10.1093/bioinformatics/btt560
https://doi.org/10.1093/bioinformatics/btt560
https://doi.org/10.1002/prot.21715
https://doi.org/10.1093/bioinformatics/btq662
https://doi.org/10.1093/bioinformatics/btz828
https://doi.org/10.1093/bioinformatics/btz828
https://doi.org/10.1093/NAR/GKM216
https://doi.org/10.1093/NAR/GKM216
https://doi.org/10.1107/S0907444909042073
https://doi.org/10.1107/S0907444909042073
https://doi.org/10.1002/pro.3330

[12]:

homelette

2.3.8 Session Info

session info
import session_info

session_info.show(html = False, dependencies = True)

homelette
pandas
session_info

anyio

asttokens

attr

babel

backcall

certifi

chardet
charset_normalizer
comm

cycler
cython_runtime
dateutil

debugpy

decorator
executing
fastjsonschema
idna
importlib_metadata
importlib_resources
ipykernel
ipython_genutils
jedi

jinja2

json5

jsonschema
jupyter_events
jupyter_server
jupyterlab_server
kiwisolver
markupsafe
matplotlib
modeller
more_itertools
mpl_toolkits
nbformat

numexpr

numpy

ost

packaging

parso

)
S v b
S w

7.0.0

o
N W
=]

.0

022.12.07

DD W WNNSDN =
R R NN
N S D

=

s .
—_
o -
(=]

D R, DN
N B O 0
SN O N

w
15N

= W NRFRDNNSD
= R, @ N D O -
.-e-.\l
NNR:» @ WwW:-
(=] w

(=)
W~

(continues on next page)

30

Chapter 2. Tutorials

homelette

pexpect
pickleshare
pkg_resources
platformdirs
prometheus_client
promod3
prompt_toolkit
psutil

ptyprocess
pure_eval
pydev_ipython
pydevconsole
pydevd
pydevd_file_utils
pydevd_plugins
pydevd_tracing
pygments
pyparsing
pyrsistent
pythonjsonlogger
pytz

qmean

requests
rfc3339_validator
rfc3986_validator
send2trash
sitecustomize

six

sniffio
stack_data
swig_runtime_data4
tornado

traitlets

urllib3

wcwidth

websocket

yaml

zipp

zmq

IPython
jupyter_client
jupyter_core
jupyterlab
notebook

Python 3.8.10 (default, Nov 14 2022,
Linux-4.15.0-206-generic-x86_64-with-glibc2.29

Session information updated at 2023-03-15 23:37

2.14.0

2.4

.6

12:59:47) [GCC 9.4.0]

(continued from previous page)

2.3. Tutorial 3: Evaluation

31

homelette

2.4 Tutorial 4: Extending homelette

[1]: import homelette as hm

import contextlib
import glob
import os.path
import sys

from modeller import environ, Selection
from modeller.automodel import LoopModel

2.4.1 Introduction

Welcome to the forth tutorial on homelette. In this tutorial, we will discuss how to implement custom building blocks,
either for generating or for evaluating models. These custom building blocks can be integrated in homology modelling
pipelines.

This is probably the most important tutorial in the series. After this tutorial, you will be able to implement your own
routines into the homelette framework, which gives you complete control over the homology modelling pipelines you
want to establish!

Please note that we encourage users to share custom routines and evaluation metrics if they think they might be useful for
the community. In our online documentation, there is a dedicated section for these contributions. If you are interested,
please contact us on GitHub or via email.

2.4.2 Alignhment

For this tutorial, we are using the same alignment as in Tutorial 1. Identical to Tutorial 1, the alignment is imported
and annotated and a Task object is created.

[2]: # read in the alignment
aln = hm.Alignment('data/single/aln_1.fasta_aln")

annotate the alignment
aln.get_sequence('ARAF') .annotate(

seq_type = 'sequence')
aln.get_sequence('3NY5').annotate(

seq_type = 'structure',

pdb_code = '3NY5',

begin_res = '1",

begin_chain = 'A',

end_res = '81"',

end_chain = 'A")

initialize task object

t = hm.Task(
task_name = 'Tutorial4',
target = 'ARAF',
alignment = aln,
overwrite = True)

32 Chapter 2. Tutorials

https://homelette.readthedocs.io/
https://github.com/PhilippJunk/homelette
mailto:philipp.junk@ucdconnect.ie

[3]:

homelette

2.4.3 Defining custom routines

As an example for a custom routine, we will implement a LoopModel class from modeller [1,2] loosely following
this tutorial on the modeller web page (in the section Loop Refining).

class Routine_loopmodel (hm.routines.Routine): # (1)

"

Custom routine for modeller loop modelling.

"

def
<# (2)

def

__init__(self, alignment, target, templates, tag, n_models=1, n_loop_models=1):

hm.routines.Routine.__init__(self, alignment, target, templates, tag)

self.routine = 'loopmodel' # string identifier of routine

self.n_models = n_models
self.n_loop_models = n_loop_models

generate_models(self): # (3)

(4) process alignment
self.alignment.select_sequences([self.target] + self.templates)
self.alignment.remove_redundant_gaps()

write alignemnt to temporary file
self.alignment.write_pir('.tmp.pir")

(5) define custom loop model class
class MyLoop(LoopModel):
set residues that will be refined by loop modelling
def select_loop_atoms(self):
return Selection(self.residue_range('18:A', '22:A"))

with contextlib.redirect_stdout(None): # (6) suppress modeller output to stdout

(7) set up modeller environment
env = environ()
env.io.hetatm = True

initialize model

m = MyLoop(env,
alnfile="'.tmp.pir",
knowns=self.templates,
sequence=self.target)

set modelling parameters
.blank_single_chain = False
.starting_model = 1

.ending_model = self.n_models
.loop.starting_model = 1
.loop.ending_model = self.n_loop_models

28 8 8 8 %

make models
m.make ()

(8) capture output
for pdb in glob.glob('{}.BL*.pdb'.format(self.target)):

(continues on next page)

2.4. Tutorial 4: Extending homelette

33

https://salilab.org/modeller/tutorial/advanced.html

homelette

(continued from previous page)

self.models.append(
hm.Model (os.path.realpath(os.path.expanduser(pdb)),
self.tag, self.routine))

(9) rename files with method from hm.routines.Routine
self._rename_models()

(10) clean up
self._remove_files(
'{}.B99%.pdb'. format(self.target),
'{}.D0O0*" . format(self.target),
'{}.DL*" . format(self.target),
"[}.IL*" . format(self.target),
.ini'.format(self.target),
.1lrsr'.format(self.target),
.rsr'.format(self.target),
.sch'.format(self.target),
.tmp* ')

The lines of code in the definition of the custom routine above that are marked with numbers get special comments

here:

1.

10.

Our custom routine in this example inherits from a parent class Routine defined in homelette. This is not
strictly necessary, however, the parent class has a few useful functions already implemented that we will make
use of (see steps 2, 9, 10)

Every routine needs to accept these arguments: alignment, target, templates, tag. In our case, we just
hand them through to the parent method Routine.__init__ that saves them as attributes, as well as introduces
the attribute self.models where models will be deposited after generation.

Every routine needs a generate_models method. Usually, functionality for, you guessed it, model generation
is packed in there.

modeller requires the aligment as a file in PIR format. The following few lines of code format the alignment
and then produce the required file.

The following lines follow closely the modeller tutorial for loop modelling. This part implements a custom
LoopModel class that defines a specific set of residue to be considered for loop modelling.

modeller writes a lot of output to stdout, and using contextlib is a way to suppress this output. If you
want to see all the output from modeller, either delete the with statement or write with contextlib.
redirect_stdout(sys.stdout) : instead.

The following lines follow closely the modeller tutorial for loop modelling. This part initializes the model and
generates the models requested.

The final models generated will be called ARAF.BLOOO100O1.pdb and so on. These lines of code find these
PDB files and add them to the Routine_loopmodel.models list as Models. After execution by a Task objects,
Model objects in this list will be added to the Task.models list.

Models generated will be renamed according to the tag given using the parent class method Routine.
_rename_models.

Temporary files from modeller as well as the temporary alignment file are removed from the folder using the
parent class method Routine._remove_files.

34

Chapter 2. Tutorials

https://salilab.org/modeller/tutorial/advanced.html
https://salilab.org/modeller/tutorial/advanced.html

[4]:

[5]:

[5]:

[6]:

homelette

Now, after implementing the routine, let’s try it out in practice.
Task.execute_routine interface for that:

perform modelling
t.execute_routine(
tag = 'custom_loop',
routine = Routine_loopmodel,
templates = ['3NY5'],
template_location = './data/single’,

n_models

:2’

n_loop_models = 2)

check generated models

t.models

[<homelette
<homelette
<homelette
<homelette

.organization
.organization
.organization
.organization

.Model
.Model
.Model
.Model

at 0x7£211£f£f3fa30>,
at 0x7£f211ff54a30>,
at 0x7£211££54d90>,
at 0x7£211££54e20>]

As explained in Tutorial 2, we will be using the

In practice, a valid routine only needs to adhere to a small number of formal criteria to fit in the homelette framework:

* It needs to be an object.

e It needs to have an __init__ method that can handle the named arguments alignment, target, templates

and tag.

¢ [t needs a generate_models method

* It needs an attribute models in which generated models are stored as Model objects in list.

Any object that satisfies these criteria can be used in the framework.

2.4.4 Defining custom evaluations

As an example for a custom evaluation, we will implement a sample evaluation that counts the number of residues in

the models.

class Evaluation_countresidues():

"

Custom evaluation: counting CA atoms

"

def __init__(self, model, quiet=True): # (1)
self.model = model
self.output = dict()
(2) perform evaluation
self.evaluate()
(3) update model.evaluation
self.model.evaluation.update(self.output)

def evaluate(self): # (4)
(5) parse model pdb
pdb = self.model.parse_pdb()

(continues on next page)

2.4. Tutorial 4: Extending homelette

35

[77:

[77:

homelette

count number of CA atoms in PDB

n_residues = pdb['name'].eq('CA").sum()

append to output

self.output['n_residues'] = n_residues

(continued from previous page)

The lines of code marked with numbers in the definiton of the custom evaluation get special comments here:

1. The __init__ function takes exactly 2 arguments: model and quiet. quiet is a boolean value indicating

whether output to stdout should be suppressed (not applicable in this case).

2. All evaluation metrics are executed upon initialization.

3. The custom_evaluation.output dictionary is merged with the Model.evaluation dictionary to make the

output of our evaluation metrics available to the model.

4. Here we define the function where the actual evaluation takes place.

5. For the actual evaluation, we make use of the Model . parse_pdb method, which parses the PDB file associated to
a specific model object to a pandas data frame. This can be useful for a number of evaluations (access residues,

coordinates, etc.)

Note

If more arguments are required for a custom evaluation, we recomment to store them as attributes in the Model objects

and then access these attributes while running the evaluation.

Now we apply our custom evaluation to our previously generated models using the Task.evaluate_models interface
(for more details, see Tutorial 3):

t.evaluate_models(Evaluation_countresidues)

t.get_evaluation()

model
custom_loop_1.pdb
custom_loop_2.pdb
custom_loop_3.pdb
custom_loop_4.pdb

w N~

tag
custom_loop
custom_loop
custom_loop
custom_loop

routine n_residues

loopmodel
loopmodel
loopmodel
loopmodel

73
73
73
73

In practice, the formal requirements for a custom evaluation are the following:

* It has to be an object.

e __init__ has the two arguments model and quiet. More arguments would work in conjunction with Task.
evaluate_models only if defaults are set and used. We recommend storing more arguments as attributes in the

Model object and then accessing them during the evaluation.

¢ It executes evaluation on initialization.

* On finishing the evaluation, it updates the Model.evaluation dictionary with the results of the evaluation.

36

Chapter 2. Tutorials

[8]:

homelette

2.4.5 Further reading

Congratulations on finishing the tutorial on extending homelette.

Please take again notice that on our online documentation, there is a page collecting user-submitted custom routines
and evaluation metrics. User are encouraged to share if they implemented something which they might think could be
useful for the community. If you are interested, please contact us on GitHub or via email.

There are more tutorials which might interest you:

 Tutorial 1:
* Tutorial 2:
 Tutorial 3:
 Tutorial 5:
* Tutorial 6:
 Tutorial 7:

¢ Tutorial 8:

Learn about the basics of homelette.

Learn more about already implemented routines for homology modelling.

Learn about the evaluation metrics available with homelette.

Learn about how to use parallelization in order to generate and evaluate models more efficiently.
Learn about modelling protein complexes.

Learn about assembling custom pipelines.

Learn about automated template identification, alignment generation and template processing.

2.4.6 References

[1] Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of
Molecular Biology, 234(3), 779-815. https://doi.org/10.1006/jmbi.1993.1626

[2] Webb, B., & Sali, A. (2016). Comparative Protein Structure Modeling Using MODELLER. Current Protocols in
Bioinformatics, 54(1), 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3

2.4.7 Session Info

session info
import session_info
session_info.show(html = False, dependencies = True)

homelette
modeller
pandas
session_info

anyio
asttokens
attr
babel
backcall
certifi
chardet

charset_normalizer

comm
cycler

o
N W
=]

.0

022.12.07

DD W W NNSN =
= =, NN -
N S D

—_
-
(=]

(continues on next page)

2.4. Tutorial 4:

Extending homelette 37

https://homelette.readthedocs.io/
https://github.com/PhilippJunk/homelette
mailto:philipp.junk@ucdconnect.ie
https://doi.org/10.1006/jmbi.1993.1626
https://doi.org/10.1002/cpbi.3

homelette

(continued from previous page)

cython_runtime NA
dateutil 2.8.2
debugpy 1.6.6
decorator 4.4.2
executing 1.2.0
fastjsonschema NA
idna 3.4
importlib_metadata NA
importlib_resources NA
ipykernel 6.21.3
ipython_genutils 0.2.0
jedi 0.18.2
jinja2 3.1.2
json5 NA
jsonschema 4.17.3
jupyter_events 0.6.3
jupyter_server 2.4.0
jupyterlab_server 2.20.0
kiwisolver 1.0.1
markupsafe 2.1.2
matplotlib 3.1.2
more_itertools NA
mpl_toolkits NA
nbformat 5.7.3
numexpr 2.8.4
numpy 1.24.2
ost 2.3.1
packaging 20.3
parso 0.8.3
pexpect 4.8.0
pickleshare 0.7.5
pkg_resources NA
platformdirs 3.1.1
prometheus_client NA
promod3 3.2.1
prompt_toolkit 3.0.38
psutil 5.5.1
ptyprocess 0.7.0
pure_eval 0.2.2
pydev_ipython NA
pydevconsole NA
pydevd 2.9.5
pydevd_file_utils NA
pydevd_plugins NA
pydevd_tracing NA
pygments 2.14.0
pyparsing 2.4.6
pyrsistent NA
pythonjsonlogger NA
pytz 2022.7.1
gmean NA
requests 2.28.2
(continues on next page)
38 Chapter 2. Tutorials

[17:

homelette

(continued from previous page)

rfc3339_validator 0.1.4
rfc3986_validator 0.1.1
send2trash NA
sitecustomize NA

six 1.12.0
sniffio 1.3.0
stack_data 0.6.2
swig_runtime_data4 NA
tornado 6.2
traitlets 5.9.0
urllib3 1.26.15
wcwidth NA
websocket 1.5.1
yaml 6.0
zipp NA

zmq 25.0.1
IPython 8§.11.0
jupyter_client 8.0.3
jupyter_core 5.2.0
jupyterlab 3.6.1
notebook 6.5.3

Python 3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0]
Linux-4.15.0-206-generic-x86_64-with-glibc2.29

Session information updated at 2023-03-15 23:36

2.5 Tutorial 5: Parallelization

import homelette as hm

import time

2.5.1 Introduction

Welcome to the fifth tutorial on homelette. This tutorial is about parallelization in homelette. When modelling
hundreds or thousands of models, some processes can be significantly sped up by dividing the workload on multiple
processes in parallel (supported by appropriate hardware).

There are possibilities to parallelize both model generation and evaluation in homelette.

2.5. Tutorial 5: Parallelization 39

[2]:

[3]:

[4]:

homelette

2.5.2 Alignment and Task setup

For this tutorial, we are using the same alignment as in Tutorial 1. Identical to previous tutorials, the alignment is
imported and annotated, and a Task object is set up.

read in the alignment
aln = hm.Alignment('data/single/aln_1.fasta_aln")

annotate the alignment
aln.get_sequence('ARAF') .annotate(

seq_type = 'sequence')
aln.get_sequence('3NY5').annotate(

seq_type = 'structure',

pdb_code = '3NY5',

begin_res = '1',

begin_chain = 'A",

end_res = '81"'",

end_chain = 'A")

initialize task object

t = hm.Task(
task_name = 'Tutorial5',
target = 'ARAF',
alignment = aln,
overwrite = True)

2.5.3 Parallel model generation

When trying to parallelize model generation, homelette makes use of the parallelization methods implemented in
the packages that homelette uses, if they are available. Model generation with modeller can be parallized and is
available in homelette through a simple handler [1,2].

Allmodeller based, pre-implemented routines have the argument n_threads which can be used to use parallelization.
The defaultis n_threads = 1 which does not activate parallelization, but any number > 1 will distribute the workload
on the number of threads requested using the modeller.parallel submodule.

use only 1 thread to generate 20 models
start = time.perf_ counter()
t.execute_routine(
tag = 'l_thread',
routine = hm.routines.Routine_automodel_default,
templates = ['3NY5'],
template_location = './data/single/',
n_models = 20)
print(f'Elapsed time: {time.perf counter() - start:.2f}'")

Elapsed time: 47.84

use 4 threads to generate 20 models faster
start = time.perf_ counter()
t.execute_routine(
tag = '4_threads',
routine = hm.routines.Routine_automodel_default,

(continues on next page)

40 Chapter 2. Tutorials

[5]:

[6]:

homelette

(continued from previous page)
templates = ['3NY5'],
template_location = './data/single/',
n_models = 20,
n_threads = 4)
print(f'Elapsed time: {time.perf counter() - start:.2f}'")

Elapsed time: 15.44

Using multiple threads can significantly speed up model generation, especially if a large number of models is generated.

Note

Please be aware that the modeller.parallel submodule uses the Python module pickle, which requires objects to
be pickled to be saved in a separate file. In practical terms, if you want to run parallelization in modeller with a custom
object (i.e. a custom defined routine, see Tutorial 4), you cannot make use of parallelization unless you have imported
it from a separate file. Therefore we recommend that custom routines and evaluation are saved in a separate file and
then imported from there.

The following code block shows how custom building blocks could be put in an external file (data/extension.py)
and then imported for modelling and analysis.

import from custom file
from data.extension import Custom_Routine, Custom_Evaluation

?Custom_Routine

Init signature: Custom_Routine()

Docstring: Custom routine waiting to be implemented.
File: ~/workdir/data/extension.py

Type: type

Subclasses:

lcat data/extension.py

T

Examples of custom objects for homelette in a external file.

class Custom_Routine():

L]

Custom routine waiting to be implemented.

T

def __init__(self):
print('TODO: implement this')

class Custom_Evaluation():

T

Custom evaluation waiting to be implemented.

L]

def __init__(self):
print('TODO: implement this')

2.5. Tutorial 5: Parallelization 41

[7]:

[8]:

[9]:

[10]:

homelette

Alternatively, you could use the /homelette/extension/ folder in which extensions are stored. See our comments
on extensions in our documentation for more details.

2.5.4 Parallel model evaluation

homelette can also use parallelization to speed up model evaluation. This is internally archieved by using
concurrent. futures.ThreadPoolExecutor.

In order to use parallelization when performing evaluations, use the n_threads argument in Task.evaluate_models.

use 1 thread for model evaluation

start = time.perf_ counter()
t.evaluate_models(hm.evaluation.Evaluation_mol_probity, n_threads=1)
print(f'Elapsed time: {time.perf_counter() - start:.2f}')

Elapsed time: 468.37

use 4 threads for model evaluation

start = time.perf_counter()
t.evaluate_models(hm.evaluation.Evaluation_mol_probity, n_threads=4)
print(f'Elapsed time: {time.perf_counter() - start:.2f}')

Elapsed time: 128.37

For some evaluation schemes, using parallelization can lead to a significant speedup.

Note

Please be advised that for some (very fast) evaluation methods, the time investment of spawning new child processes
might not compensate for the speedup gained by parallelization. Test your usecase on your system in a small setting
and use at your own discretion.

use 1 thread for model evaluation

start = time.perf_counter()
t.evaluate_models(hm.evaluation.Evaluation_dope, n_threads=1)
print(f'Elapsed time: {time.perf_counter() - start:.2f}')

Elapsed time: 10.34

use 4 threads for model evaluation

start = time.perf counter()
t.evaluate_models(hm.evaluation.Evaluation_dope, n_threads=4)
print(f'Elapsed time: {time.perf_counter() - start:.2f}')

Elapsed time: 15.95

Note

When creating and using custom evaluation metrics, please make sure to avoid race conditions. Task.
evaluate_models is implemented with a protection against race conditions, but this is not bulletproof. Also, if
you need to create temporary files, make sure to create file names with model-specific names (i.e. by using the model
name in the file name). Defining custom evaluations in a separate file is not necessary, as parallelization of evaluation
methods does not rely on pickle.

42 Chapter 2. Tutorials

https://homelette.readthedocs.io/

[11]:

homelette

Note

In case some custom evaluation metrics are very memory-demanding, running it in parallel can easily overwhelm the
system. Again, we encourage you to test your usecase on your system in a small setting.

2.5.5 Further reading
Congratulation on completing Tutorial 5 about parallelization in homelette. Please note that there are other tutorials,
which will teach you more about how to use homelette:

 Tutorial 1: Learn about the basics of homelette.

 Tutorial 2: Learn more about already implemented routines for homology modelling.

 Tutorial 3: Learn about the evaluation metrics available with homelette.

* Tutorial 4: Learn about extending homelette’s functionality by defining your own modelling routines and
evaluation metrics.

 Tutorial 6: Learn about modelling protein complexes.
* Tutorial 7: Learn about assembling custom pipelines.

* Tutorial 8: Learn about automated template identification, alignment generation and template processing.

2.5.6 References
[1] Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of
Molecular Biology, 234(3), 779-815. https://doi.org/10.1006/jmbi.1993.1626

[2] Webb, B., & Sali, A. (2016). Comparative Protein Structure Modeling Using MODELLER. Current Protocols in
Bioinformatics, 54(1), 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3

2.5.7 Session Info

session info
import session_info
session_info.show(html = False, dependencies = True)

data NA
homelette 1.4
session_info 1.0.0
PIL 7.0.0
altmod NA
anyio NA
asttokens NA
attr 19.3.0
babel 2.12.1
backcall 0.2.0
certifi 2022.12.07
chardet 3.0.4

(continues on next page)

2.5. Tutorial 5: Parallelization 43

https://doi.org/10.1006/jmbi.1993.1626
https://doi.org/10.1002/cpbi.3

homelette

(continued from previous page)

charset_normalizer 3.1.0
comm 0.1.2
cycler 0.10.0
cython_runtime NA
dateutil 2.8.2
debugpy 1.6.6
decorator 4.4.2
executing 1.2.0
fastjsonschema NA
idna 3.4
importlib_metadata NA
importlib_resources NA
ipykernel 6.21.3
ipython_genutils 0.2.0
jedi 0.18.2
jinja2 3.1.2
json5 NA
jsonschema 4.17.3
jupyter_events 0.6.3
jupyter_server 2.4.0
jupyterlab_server 2.20.0
kiwisolver 1.0.1
markupsafe 2.1.2
matplotlib 3.1.2
modeller 10.4
more_itertools NA
mpl_toolkits NA
nbformat 5.7.3
numexpr 2.8.4
numpy 1.24.2
ost 2.3.1
packaging 20.3
pandas 1.5.3
parso 0.8.3
pexpect 4.8.0
pickleshare 0.7.5
pkg_resources NA
platformdirs 3.1.1
prometheus_client NA
promod3 3.2.1
prompt_toolkit 3.0.38
psutil 5.5.1
ptyprocess 0.7.0
pure_eval 0.2.2
pydev_ipython NA
pydevconsole NA
pydevd 2.9.5
pydevd_file_utils NA
pydevd_plugins NA
pydevd_tracing NA
pygments 2.14.0
pyparsing 2.4.6
(continues on next page)
44 Chapter 2. Tutorials

[17:

homelette

(continued from previous page)

pyrsistent NA
pythonjsonlogger NA

pytz 2022.7.1
gmean NA
requests 8.2

2.2
rfc3339_validator 0.1.4
rfc3986_validator 0.1.1
send2trash NA

sitecustomize NA

six 1.12.0
sniffio 1.3.0
stack_data 0.6.2
swig_runtime_data4 NA
tornado 6.2
traitlets 5.9.0
urllib3 1.26.15
wcwidth NA
websocket 1.5.1
yaml 6.0
zipp NA

zmq 25.0.1
IPython 8§.11.0
jupyter_client 8.0.3
jupyter_core 5.2.0
jupyterlab 3.6.1
notebook 6.5.3

Python 3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0]
Linux-4.15.0-206-generic-x86_64-with-glibc2.29

Session information updated at 2023-03-15 23:56

2.6 Tutorial 6: Complex Modelling

import homelette as hm

2.6.1 Introduction

Welcome to the 6th tutorial on homelette about homology modelling of complex structures.

There are multiple issues about modelling protein complexes that make it a separate topic from the homology modelling
of single structures:

e Usually, a complex structure is required as a template.
* Not all modelling programs can perform complex modelling.
* Not all evaluation metrics developed for homology modelling are applicable to complex structures.

* You need multiple alignments.

2.6. Tutorial 6: Complex Modelling 45

[2]:

homelette

homelette is able to use modeller based modelling routines for complex modelling [1,2], and has some specific
classes in place that make complex modelling easier to the user: - A function to assemble appropriate complex align-
ments - Special modelling classes for complex modelling - Special evaluation metrics for complex modelling

For this tutorial, we will build models for ARAF in complex with HRAS. As a template, we will use the structures
[4GON] (https://www.rcsb.org/structure/4GON)(RAF1 in complex with HRAS) and 3NY5 (BRAF).

2.6.2 Alignment

Since all current modelling routines for protein complexes are modeller based, an alignment according to the
modeller specification has to be constructed. homelette has the helper function assemble_complex_aln in the
homelette.alignment submodule that is able to do that:

?hm.alignment.assemble_complex_aln

Signature:
hm.alignment.assemble_complex_aln(
*args: Type[ForwardRef('Alignment')],
names: dict,
) -> Type[ForwardRef('Alignment')]
Docstring:
Assemble complex alignments compatible with MODELLER from individual
alignments.

Parameters

*args : Alignment
The input alignments

names : dict
Dictionary instructing how sequences in the different alignment objects
are supposed to be arranged in the complex alignment. The keys are the
names of the sequences in the output alignments. The values are
iterables of the sequence names from the input alignments in the order
they are supposed to appaer in the output alignment. Any value that can
not be found in the alignment signals that this position in the complex
alignment should be filled with gaps.

Returns
Alignment
Assembled complex alignment

Examples

>>> alnl = hm.Alignment (None)

>>> alnl.sequences = {
'seql_1': hm.alignment.Sequence('seql_1', "HELLO'),
'seq2_1': hm.alignment.Sequence('seq2_1', 'H---I"'),
'seq3_1': hm.alignment.Sequence('seq3_1"', '-HI--')

. }

>>> aln2 = hm.Alignment (None)

>>> aln2.sequences = {
'seq2_2"': hm.alignment.Sequence('seq2_2', 'KITTY'),
'seql_2': hm.alignment.Sequence('seql_2', 'WORLD')

(continues on next page)

46 Chapter 2. Tutorials

https://www.rcsb.org/structure/4G0N)(RAF1
https://www.rcsb.org/structure/3NY5

[3]:

homelette

(continued from previous page)

}
>>> names = {'seql': ('seql_1', 'seql_2'),
'seq2': ('seq2_1', 'seq2_2'),
'seq3': ('seq3_1', 'gaps')
}

>>> aln_assembled = hm.alignment.assemble_complex_aln(
alnl, aln2, names=names)
>>> aln_assembled.print_clustal()

seql HELLO/WORLD

seq?2 H---I/KITTY

seq3 -HI--/-----

File: /usr/local/src/homelette-1.4/homelette/alignment.py
Type: function

In our case, we assemble an alignment from two different alignments, aln_1 which contains ARAF, RAF1 (4GON)
and BRAF (3NY5) and aln_2 which contains an HRAS sequence and the HRAS sequence from 4GON.

import single alignments
alnl_file = 'data/complex/aln_eff.fasta_aln'
aln2_file = 'data/complex/aln_ras.fasta_aln'

aln_1
aln_2

hm.Alignment(alnl_file)
hm.Alignment (aln2_file)

build dictionary that indicates how sequences should be assembled
names = {

"ARAF': ('ARAF', 'HRAS'"),

"4GON': ('4GON', '4GON'),

"3NY5': ('3NY5', '"),
3

assemble alignment

aln = hm.alignment.assemble_complex_aln(aln_1, aln_2, names=names)
aln.remove_redundant_gaps ()

aln.print_clustal (line_wrap=70)

ARAF ---GTVKVYLPNKQRTVVTVRDGMSVYDSLDKALKVRGLNQDCCVVYRLI---KGRKTVTAWDTAIAPLD
4GON -TSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARLDWNTDAASLT
3NY5 HQKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRIQ------ KKPIGWDTDISWLT
ARAF GEELIVEVL------ /MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLD
4GON GEELQVDFL------ /MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLD
3NY5 GEELHVEVLENVPLT /- —---—— - - ——m oo oo oo
ARAF ILDTAGQEEYSAMRDQYMRTGEGFLCVFAINNTKSFEDIHQYREQIKRVKDSDDVPMVLVGNKCDLAART
4GON ILDTAGQEE--AMRDQYMRTGEGFLCVFAINNTKSFEDIHQYREQIKRVKDSDDVPMVLVGNKCDLAART
3NY5 = e
ARAF VESRQAQDLARSYGIPYIETSAKTRQGVEDAFYTLVREIRQ-

4GON VESRQAQDLARSYGIPYIETSAKTRQGVEDAFYTLVREIRQH

(continues on next page)

2.6. Tutorial 6: Complex Modelling 47

homelette

(continued from previous page)

531140

After assembling the complex alignment, we annotate it as usual:

[4]: # annotate alignment
aln.get_sequence('ARAF') .annotate(seq_type='sequence')

aln.get_sequence('4GON') .annotate(seq_type = 'structure',
pdb_code = "4GON',
begin_res = '1',
begin_chain = 'A'")

aln.get_sequence('3NY5') .annotate(seq_type = 'structure',
pdb_code = '3NY5',
begin_res = '1',

begin_chain = 'A")

2.6.3 Modelling

There are 4 routines available specifically for complex modelling based on modeller [1,2] and altmod [3]. They run
with the same parameters as their counterparts for single structure modelling, except that they handle naming of new
chains and residue numbers a bit differently.

The following routines are available for complex modelling:
e Routine_complex_automodel_default
e Routine_complex_automodel_slow
¢ Routine_complex_altmod_default

e Routine_complex_altmod_slow

[5]: # initialize task object
t = hm.Task(task_name='Tutorial6"',
alignment=aln,
target="ARAF',
overwrite=True)

Modelling can be performed with Task.execute_routine as usual.

[6]: # generate models based on a complex template
t.execute_routine(tag="automodel "' + "'4GON',
routine=hm.routines.Routine_complex_automodel_default,
templates = ['4GON'],
template_location="data/complex/",
n_models=20,
n_threads=5)

Not all templates have to be complex templates, it is perfectly applicable to mix complex templates and single templates.
However, at least one complex template should be used in order to convey information about the orientation of the
proteins to each other.

48 Chapter 2. Tutorials

[7]7:

[8]:

[9]:

[9]:

homelette

generate models based on a complex and a single template
t.execute_routine(tag="automodel_' + '_'.join(['4GON', '3NY5']),
routine=hm.routines.Routine_complex_automodel_default,
templates = ['4GON', '3NY5'],
template_location="data/complex',
n_models=20,
n_threads=5)

2.6.4 Evaluation

Not all evaluation metrics are designed to evaluate complex structures. For example, the SOAP score has different statis-
tical potentials for single proteins (Evaluation_soap_protein) and for protein complexes (Evaluation_soap_pp)

[4].

perform evaluation

t.evaluate_models(hm.evaluation.Evaluation_mol_probity,
hm.evaluation.Evaluation_soap_pp,
n_threads=5)

show a bit of the evaluation
t.get_evaluation().sort_values(by="soap_pp_all').head()

model tag \
32 automodel 4GON_3NY5_13.pdb automodel_4GON_3NY5
39 automodel_4GON_3NY5_20.pdb automodel_ 4GON_3NY5
28 automodel 4GON_3NY5_9.pdb automodel_4GON_3NY5
29 automodel_4GON_3NY5_10.pdb automodel_4GON_3NY5
9 automodel_4GON_10.pdb automodel_4GON

routine mp_score soap_pp_all soap_pp_atom \

32 complex_automodel_default 2.25 -9502.636719 -7770.577637
39 complex_automodel_default 2.15 -9486.243164 -7656.946777
28 complex_automodel_default 2.46 -9475.368164 -7769.337891
29 complex_automodel_default 2.72 -9458.609375 -7647.797852
9 complex_automodel_default 2.39 -9405.662109 -7718.845215

soap_pp_pair
32 -1732.059326
39 -1829.296143
28 -1706.030396
29 -1810.811646
9 -1686.817139

2.6. Tutorial 6: Complex Modelling 49

[10]:

homelette

2.6.5 Further reading

Congratulation on finishing the tutorial about complex modelling in homelette. The following tutorials might also
be of interest to you:

e Tutorial 1: Learn about the basics of homelette.
 Tutorial 2: Learn more about already implemented routines for homology modelling.
¢ Tutorial 3: Learn about the evaluation metrics available with homelette.

» Tutorial 4: Learn about extending homelette’s functionality by defining your own modelling routines and
evaluation metrics.

 Tutorial 5: Learn about how to use parallelization in order to generate and evaluate models more efficiently.
 Tutorial 7: Learn about assembling custom pipelines.

 Tutorial 8: Learn about automated template identification, alignment generation and template processing.

2.6.6 References

[1] Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of
Molecular Biology, 234(3), 779-815. https://doi.org/10.1006/jmbi.1993.1626

[2] Webb, B., & Sali, A. (2016). Comparative Protein Structure Modeling Using MODELLER. Current Protocols in
Bioinformatics, 54(1), 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3

[3] Janson, G., Grottesi, A., Pietrosanto, M., Ausiello, G., Guarguaglini, G., & Paiardini, A. (2019). Revisiting the
“satisfaction of spatial restraints” approach of MODELLER for protein homology modeling. PLoS Computational
Biology, 15(12), €1007219. https://doi.org/10.1371/journal.pcbi.1007219

[4] Dong, G. Q., Fan, H., Schneidman-Duhovny, D., Webb, B., Sali, A., & Tramontano, A. (2013). Optimized atomic
statistical potentials: Assessment of protein interfaces and loops. Bioinformatics, 29(24), 3158-3166. https://doi.org/
10.1093/bioinformatics/btt560

2.6.7 Session Info

session info
import session_info
session_info.show(html = False, dependencies = True)

homelette 1.4
pandas 1.5.3
session_info 1.0.0
PIL 7.0.0
altmod NA
anyio NA
asttokens NA
attr 19.3.0
babel 2.12.1
backcall 0.2.0
certifi 2022.12.07
chardet 3.0.4

(continues on next page)

50 Chapter 2. Tutorials

https://doi.org/10.1006/jmbi.1993.1626
https://doi.org/10.1002/cpbi.3
https://doi.org/10.1371/journal.pcbi.1007219
https://doi.org/10.1093/bioinformatics/btt560
https://doi.org/10.1093/bioinformatics/btt560

homelette

charset_normalizer
comm

cycler
cython_runtime
dateutil

debugpy

decorator
executing
fastjsonschema
idna
importlib_metadata

importlib_resources

ipykernel
ipython_genutils
jedi

jinja2

json5

jsonschema
jupyter_events
jupyter_server
jupyterlab_server
kiwisolver
markupsafe
matplotlib
modeller
more_itertools
mpl_toolkits
nbformat
numexpr

numpy

ost

packaging

parso

pexpect
pickleshare
pkg_resources
platformdirs
prometheus_client
promod3
prompt_toolkit
psutil
ptyprocess
pure_eval
pydev_ipython
pydevconsole
pydevd
pydevd_file_utils
pydevd_plugins
pydevd_tracing
pygments
pyparsing
pyrsistent

= -
[z}

w N 00 N
[N oY

S~ S NN R DNU
A — -
w

N 0 o -
v w

w
[y
[y

2.14.0
2.4.6
NA

(continued from previous page)

(continues on next page)

2.6. Tutorial 6: Complex Modelling

51

[17:

homelette

(continued from previous page)

pythonjsonlogger NA

pytz 2022.7.1
gmean NA
requests 8.2

2.2
rfc3339_validator 0.1.4
rfc3986_validator 0.1.1
send2trash NA

sitecustomize NA

six 1.12.0
sniffio 1.3.0
stack_data 0.6.2
swig_runtime_data4 NA
tornado 6.2
traitlets 5.9.0
urllib3 1.26.15
wcwidth NA
websocket 1.5.1
yaml 6.0
zipp NA

zmq 25.0.1
IPython 8.11.0
jupyter_client 8.0.3
jupyter_core 5.2.0
jupyterlab 3.6.1
notebook 6.5.3

Python 3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0]
Linux-4.15.0-206-generic-x86_64-with-glibc2.29

Session information updated at 2023-03-15 23:40

2.7 Tutorial 7: Assembling custom pipelines

import homelette as hm

import matplotlib as plt
import seaborn as sns

2.7.1 Introduction

Welcome to the final tutorial on homelette. This tutorial is about combining what we learnt in the previous tutorials
about model generating and model evaluating building blocks.

The strength of homelette lies in its ability to A) be almost freely extendable by the user (see Tutorial 4) and B) in the
ease with which pre-defined or custom-made building blocks for model generation and evaluation can be assembled
into custom pipelines. This tutorial showcases B).

For our target sequence, ARAF, we will identify templates and generate alignments with the
AlignmentGenerator_pdb building block [1,2,3,4]. We will select two templates, BRAF (3NY5) and RAF1

52 Chapter 2. Tutorials

https://www.rcsb.org/structure/3NY5

[2]:

[3]:

[3]:

[4]:

homelette

(4GON). We will build models for ARAF with two different routines, Routine_automodel_default and
Routine_automodel_slow [5,6], and from the different templates. The generated models will be evaluated by SOAP
scores and MolProbity and a combined score will be calculated using Borda Count [7,8,9,10].

2.7.2 Alignment

Consistent with the other tutorials, we will be modelling the protein ARAF. For this tutorial, we will use the
AlignmentGenerator_pdb in order to search for templates, create an alignment, and process both the templates
as well as the alignment:

gen = hm.alignment.AlignmentGenerator_pdb.from_fasta('data/alignments/ARAF.fa")
search for templates and generate first alignment

gen.get_suggestion()
gen.show_suggestion()

Querying PDB...
Query successful, 16 found!

Retrieving sequences...
Sequences succefully retrieved!

Generating alignment...
Alignment generated!

template coverage identity

0 6XI7_2 100.0 60.27
1 1C1Y_2 100.0 60.27
2 1GUA_2 100.0 60.27
3 4GON_2 100.0 60.27
4 4G3X_2 100.0 60.27
5 6v1i_2 100.0 60.27
6 6XGU_2 100.0 60.27
7 6XGV_2 100.0 60.27
8 6XHA_2 100.0 60.27
9 6XHB_2 100.0 60.27
10 7JHP_2 100.0 60.27
11 3KUC_2 100.0 58.90
12 3KUD_2 100.0 58.90
13 3NY5_1 100.0 58.90
14 6NTD_2 100.0 53.42
15 6NTC_2 100.0 52.05

For this example, we will choose one template of BRAF (3NY5) and one template from RAF1 (4GON):

select templates and show alignment
gen.select_templates(['3NY5_1', "4GON_2'])
gen.alignment.print_clustal(70)

ARAF - GTVKVYLPNKQRTVVTVRDGMSVYDSLDKALKVRGLNQDCCVVYRLI---KGRKTVT
3NY5_1 MGHHHHHHSHMQKPIVRVFLPNKQRTVVPARCGVTVRDSLKKALMMRGLTIPECCAVYRIQ---DGEKKPI
4GON_2 @ - TSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL

(continues on next page)

2.7. Tutorial 7: Assembling custom pipelines 53

https://www.rcsb.org/structure/4G0N

[5]:

[5]:

homelette

ARAF AWDTAIAPLDGEELIVEVL----------
3NY5_1 GWDTDISWLTGEELHVEVLENVPLTTHNF
4GON_2 DWNTDAASLIGEELQVDFL----------

Next, we download the template structures and process both the alignment and the structures:

download structures, process alignment and structures

gen.get_pdbs()
gen.show_suggestion()

Guessing template naming format...

Template naming format guessed: polymer_entity!

Checking template dir...

Template dir not found...

New template dir created at
"/home/homelette/workdir/templates™!

Processing templates:

3NY5 downloading from PDB...
3NY5 downloaded!

3NY5_A: Chain extracted!
3NY5_A: Alignment updated!
3NY5_A: PDB processed!
3NY5_B: Chain extracted!
3NY5_B: Alignment updated!
3NY5_B: PDB processed!
3NY5_C: Chain extracted!
3NY5_C: Alignment updated!
3NY5_C: PDB processed!
3NY5_D: Chain extracted!
3NY5_D: Alignment updated!
3NY5_D: PDB processed!

4GON downloading from PDB...
4GON downloaded!

4GON_B: Chain extracted!
4GON_B: Alignment updated!
4GON_B: PDB processed!

Finishing... All templates successfully
downloaded and processed!

Templates can be found in
"/home/homelette/workdir/templates™.

template coverage identity

(continued from previous page)

0 4GON_B 100.00 60.27
1 3NY5_B 94.52 57.53
2 3NY5_A 93.15 57.53
3 3NY5_C 93.15 57.53
(continues on next page)
54 Chapter 2. Tutorials

[6]:

[6]:

[7]:

homelette

(continued from previous page)

4 3NY5_D 91.78 57.53

We can see that there are multiple chains of 3N'Y5 that fit our alignment. One of the chains has less missing residues
than the other ones, so we are choosing this one:

select templates
gen.select_templates(['4GON_B', '3NY5_B'])
gen.alignment.print_clustal(70)
gen.show_suggestion()

ARAF ----GTVKVYLPNKQRTVVTVRDGMSVYDSLDKALKVRGLNQDCCVVYRLI---KGRKTVTAWDTAIAPL
4GON_B --TSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARLDWNTDAASL
3NY5_B SHQKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRIQ----- EKKPIGWDTDISWL
ARAF DGEELIVEVL--------
4GON_B IGEELQVDFL--------
3NY5_B TGEELHVEVLENVPLTTH

template coverage identity
® 4GON_B 100.00 60.27
1 3NY5_B 94.52 57.53

Now that we have our templates prepared and aligned, we can now define a custom Task object in order to assemble
homelette building blocks into a pipeline:

2.7.3 Custom pipeline

The easiest way to formulate custom pipelines by assembling the homelette building blocks of model building and
evaluation is to construct custom Task objects:

class CustomPipeline(hm.Task):

"

Example for a cumstom pipeline
def model_generation(self, templates):
model generation with automodel_default
self.execute_routine(tag="automodel_def ' + '-'.join(templates),
routine = hm.routines.Routine_automodel_default,
templates = templates,
template_location = './templates/',
n_models = 20,
n_threads = 5)
model generation with autmodel_slow
self.execute_routine(tag="autmodel_slow_' + '-'.join(templates),
routine = hm.routines.Routine_automodel_slow,
templates = templates,
template_location = './templates/',
n_models = 20,
n_threads = 5)

(continues on next page)

2.7. Tutorial 7: Assembling custom pipelines 55

[8]:

[9]:

[10]:

[11]:
[11]:

homelette

(continued from previous page)

def model_evaluation(self):

perform evaluation

self.evaluate_models(hm.evaluation.Evaluation_mol_probity,
n_threads=5)

self.evaluate_models(hm.evaluation.Evaluation_soap_protein,
n_threads=5)

self.evaluate_models(hm.evaluation.Evaluation_gmean4,
n_threads=5)

ev = self.get_evaluation()

borda count for best models

ev['points_soap'] = ev.shape[0] - ev['soap_protein'].rank()

ev['points_mol_probity'] = ev.shape[0] - ev['mp_score'].rank()

ev['borda_score'] = ev['points_soap'] + ev['points_mol_probity']

ev['borda_rank'] = ev['borda_score'].rank(ascending=False)

ev = ev.drop(labels=['points_soap', 'points_mol_probity'], axis=1)

return ev

‘We have constructed a custom Task object (more specifically, a custom objects that inherits all methods and attributes

from Task) and added two more functions: model_generation and model_evaluation.

In CustomPipeline.model_generation we are using two routines (Routine_automodel_default and
Routine_automodel_slow) to generate 20 models each. In CustomPipeline.model_generation we evaluate
the models using Evaluation_mol_probity and Evaluation_soap_protein and then rank the generated models

based on both evaluation metrics using Borda Count.

After constructing our pipeline, let’s execute it with two different templates as an example:

After having a custom Task object defined, we can initialize it from the AlignmentGenerator in order to do the

modelling and evaluation:

initialize task from alignment generator
t = gen.initialize_task(

task_name = 'Tutorial7',

overwrite = True,

task_class = CustomPipeline)

execute pipeline for different templates
t.model_generation(['3NY5_B'])
t.model_generation(['4GON_B'])

df_eval = t.model_evaluation()

We have successfully generated and evaluated 80 models.

get template from tag

df_eval['template'] = df_eval['tag'].str.contains('3NY5') .map({True: '3NY5', False:

='D

df_eval.sort_values(by = 'borda_rank').head(10)

model tag routine \
64 autmodel_slow_4GON_B_5.pdb autmodel_slow_4GON_B automodel_slow
77 autmodel_slow_4GON_B_18.pdb autmodel_slow_4GON_B automodel_slow

'4GON

(continues on next page)

56 Chapter 2. Tutorials

[12]:

homelette

38 autmodel_slow_3NY5_B_19.pdb autmodel_slow_3NY5_B automodel_slow

69 autmodel_slow_4GON_B_10.pdb autmodel_slow_4GON_B automodel_slow

63 autmodel_slow_4GON_B_4.pdb autmodel_slow_4GON_B automodel_slow

79 autmodel_slow_4GON_B_20.pdb autmodel_slow_4GON_B automodel_slow

72 autmodel_slow_4GON_B_13.pdb autmodel_slow_4GON_B automodel_slow

73 autmodel_slow_4GON_B_14.pdb autmodel_slow_4GON_B automodel_slow

49 automodel_def 4GON_B_10.pdb automodel_def 4GON_B automodel_default

34 autmodel_slow_3NY5_B_15.pdb autmodel_slow_3NY5_B automodel_slow
mp_score soap_protein gqmean4 qgmeand4_z_score borda_score borda_rank \

64 2.21 -45545.746094 0.814469 0.255860 149.5 1.0

77 2.17 -45043.023438 0.775498 -0.340560 143.0 2.0

38 2.42 -48817.878906 0.769190 -0.437096 141.0 3.0

69 2.30 -45205.257812 0.805243 0.114666 138.0 4.0

63 2.26 -44921.707031 0.771055 -0.408556 134.0 5.0

79 2.24 -44596.234375 0.787342 -0.159296 131.5 6.0

72 2.21 -44206.707031 0.796167 -0.024243 128.5 7.0

73 2.39 -44924.730469 0.754554 -0.661071 126.0 8.0

49 2.47 -45311.910156 0.767716 -0.459645 125.0 9.0

34 2.33 -44530.144531 0.720679 -1.179500 124.0 10.0
template

64 4GON

77 4GON

38 3NY5

69 4GON

63 4GON

79 4GON

72 4GON

73 4GON

49 4GON

34 3NY5

(continued from previous page)

We can see that most of the best 10 models were generated with the slower routine Routine_autmodel_slow. This
is to be expected, as this routine spends more time on model refinement and should therefore produce “better’” models.

Next, we visualize the results of our evaluation with seaborn.

2.7.4 Visualization

visualize combined score with seaborn
%matplotlib inline

set font size
plt.rcParams.update({'font.size': 16})

plot = sns.boxplot(x = 'routine', y = 'borda_score', hue='template', data=df_eval,

palette="viridis")
plot.set(xlabel = 'Routine")
plot.set(ylabel = 'Combined Score')
plot.figure.set_size_inches(10, 10)

(continues on next page)

2.7. Tutorial 7: Assembling custom pipelines

57

homelette

(continued from previous page)

plot.legend(title = 'Template', loc = 'lower right', ncol = 2, fancybox = True)
#plot.figure.savefig('tutorial7.png', dpi=300)

[12]: <matplotlib.legend.Legend at 0x7£23799902e0>

140 -

120 -

[
o
o

80 -

Combined Score

60 -

40 -

Template

20 B 3NYS5 EEm 4GON

automodél_default automodel_slow
Routine

As expected, the routine which spends more time on model refinement (Routine_automodel_slow) produces on
average better results. Also, there are interesting differences between the templates used.

58 Chapter 2. Tutorials

homelette

2.7.5 Further Reading

Congratulations on finishing the final tutorial about homelette. You might also be interested in the other tutorials:
* Tutorial 1: Learn about the basics of homelette.
* Tutorial 2: Learn more about already implemented routines for homology modelling.
* Tutorial 3: Learn about the evaluation metrics available with homelette.

 Tutorial 4: Learn about extending homelette’s functionality by defining your own modelling routines and
evaluation metrics.

 Tutorial 5: Learn about how to use parallelization in order to generate and evaluate models more efficiently.
 Tutorial 6: Learn about modelling protein complexes.

 Tutorial 8: Learn about automated template identification, alignment generation and template processing.

2.7.6 References

[1] Rose, Y., Duarte, J. M., Lowe, R., Segura, J., Bi, C., Bhikadiya, C., Chen, L., Rose, A. S., Bittrich, S., Burley, S.
K., & Westbrook, J. D. (2021). RCSB Protein Data Bank: Architectural Advances Towards Integrated Searching and
Efficient Access to Macromolecular Structure Data from the PDB Archive. Journal of Molecular Biology, 433(11),
166704. https://doi.org/10.1016/J.JMB.2020.11.003

[2] Steinegger, M., & Soding, J. (2017). MMseqs2 enables sensitive protein sequence searching for the analysis of
massive data sets. Nature Biotechnology 2017 35:11, 35(11), 1026—1028. https://doi.org/10.1038/nbt.3988

[3] Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M.,
Soding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple
sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. https://doi.org/10.1038/MSB.
2011.75

[4] Sievers, F., & Higgins, D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences.
Protein Science, 27(1), 135-145. https://doi.org/10.1002/PR0O.3290

[5] Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of
Molecular Biology, 234(3), 779-815. https://doi.org/10.1006/jmbi.1993.1626

[6] Webb, B., & Sali, A. (2016). Comparative Protein Structure Modeling Using MODELLER. Current Protocols in
Bioinformatics, 54(1), 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3

[7] Dong, G. Q., Fan, H., Schneidman-Duhovny, D., Webb, B., Sali, A., & Tramontano, A. (2013). Optimized atomic
statistical potentials: Assessment of protein interfaces and loops. Bioinformatics, 29(24), 3158-3166. https://doi.org/
10.1093/bioinformatics/btt560

[8] Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., Murray, L. W., Arendall, W. B.,
Snoeyink, J., Richardson, J. S., & Richardson, D. C. (2007). MolProbity: all-atom contacts and structure validation
for proteins and nucleic acids. Nucleic Acids Research, 35(suppl_2), W375-W383. https://doi.org/10.1093/NAR/
GKM216

[9] Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W.,
Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crys-
tallography. Acta Crystallographica Section D: Biological Crystallography, 66(1), 12-21. https://doi.org/10.1107/
S0907444909042073

[10] Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy,
D. A., Hintze, B. J., Chen, V. B,, Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C.,
Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom
structure validation. Protein Science, 27(1), 293-315. https://doi.org/10.1002/pro.3330

2.7. Tutorial 7: Assembling custom pipelines 59

https://doi.org/10.1016/J.JMB.2020.11.003
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1038/MSB.2011.75
https://doi.org/10.1038/MSB.2011.75
https://doi.org/10.1002/PRO.3290
https://doi.org/10.1006/jmbi.1993.1626
https://doi.org/10.1002/cpbi.3
https://doi.org/10.1093/bioinformatics/btt560
https://doi.org/10.1093/bioinformatics/btt560
https://doi.org/10.1093/NAR/GKM216
https://doi.org/10.1093/NAR/GKM216
https://doi.org/10.1107/S0907444909042073
https://doi.org/10.1107/S0907444909042073
https://doi.org/10.1002/pro.3330

[13]:

homelette

2.7.7 Session Info

session info
import session_info

session_info.show(html = False, dependencies = True)

homelette
matplotlib

pandas

seaborn
session_info

PIL

altmod

anyio

asttokens

attr

babel

backcall

certifi

chardet
charset_normalizer
comm

cycler
cython_runtime
dateutil

debugpy

decorator
executing
fastjsonschema
idna
importlib_metadata
importlib_resources
ipykernel
ipython_genutils
jedi

jinja2

json5

jsonschema
jupyter_events
jupyter_server
jupyterlab_server
kiwisolver
markupsafe
matplotlib_inline
modeller
more_itertools
mpl_toolkits
nbformat

numexpr

numpy

ost

mR @ R, W E
S = Ul = b
w N

O
N W
=

.0

022.12.07

DD W W NN =
R R QNN -
N @ D

Z=zZ2wZ2F,r AR, NS
>>.>....:>.
S N D O =
[- e e s S -
. N O N .
w (=]

oo -
N

w oo
== NN
N D

R @ N, NN N

(continues on next page)

60

Chapter 2. Tutorials

homelette

packaging

parso

pexpect
pickleshare
pkg_resources
platformdirs
prometheus_client
promod3
prompt_toolkit
psutil

ptyprocess
pure_eval
pydev_ipython
pydevconsole
pydevd
pydevd_file_utils
pydevd_plugins
pydevd_tracing
pygments
pyparsing
pyrsistent
pythonjsonlogger
pytz

gmean

requests
rfc3339_validator
rfc3986_validator
scipy

send2trash
sitecustomize

six

sniffio
stack_data
swig_runtime_data4
tornado

traitlets

urllib3

wcwidth

websocket

yaml

zipp

zmq

IPython
jupyter_client
jupyter_core
jupyterlab
notebook

Python 3.8.10 (default, Nov 14 2022,
Linux-4.15.0-206-generic-x86_64-with-glibc2.29

2.14.0

2.4

.6

12:59:47) [GCC 9.4.0]

(continued from previous page)

(continues on next page)

2.7. Tutorial 7: Assembling custom pipelines

61

[1]:

homelette

(continued from previous page)

Session information updated at 2023-03-15 23:50

2.8 Tutorial 8: Automatic Alignment Generation

import homelette as hm

2.8.1 Introduction

Welcome to the eighth tutorial for homelette, in which we will explore homelette’s tool for automated alignment
generation.

The alignment is a central step in homology modelling, and the quality of the alignment used for modelling has a lot
of influence on the final models. In general, the challenge of creating solid sequence alignments is mainly dependent
how closely the target and template are. If they share a high sequence identity, the alignments are easy to construct and
the modelling process will most likely be successful.

Note

As a rule of thumb, it is said that everything above 50-60% sequence identity is well approachable, while everything
below 30% sequence identity is very challenging to model.

homelette has methods that can automatically generate an alignment given a query sequence. However, these methods
hide some of the complexity of generating good alignments. Use them at your own discretion, especially for target
sequences with low sequence identity to any template.

Note

Be careful with automatically generated alignments if your protein of interest has no closely related templates

After these words of caution, let’s look at the implemented methods:
e alignment.AlignmentGenerator_pdb: Query the PDB and local alignment with Clustal Omega
e alignment.AlignmentGenerator_hhblits: Local database search against PDB70 database.

* alignment.AlignmentGenerator_from_aln: For if you already have an alignment ready, but want to make
use of homelette’s processing of templates and alignments.

2.8.2 Method 1: Querying RCSB and Realignhment of template sequences with
Clusta Omega

This class performs a three step process:

» Template Identification: Query the RCSB using a sequence (interally, MMseq2 is used by RCSB) [1, 2]
(get_suggestion)

* Then the sequences of identified templates are aligned locally using Clustal Omega [3, 4]. (get_suggesion)

* Finally, the template structures are downloaded and processed together with the alignment (get_pdbs)

62 Chapter 2. Tutorials

[2]:

[3]:

[4]:
[4]:

[5]:

homelette

Afterwards, the templates schould be ready for performing homology modelling.

For a practical demonstration, let’s find some templates for ARAF:

gen = hm.alignment.AlignmentGenerator_pdb. from_fasta('data/alignments/ARAF.fa")
gen = hm.alignment.AlignmentGenerator_pdb(

sequence =

— 'GTVKVYLPNKQRTVVTVRDGMSVYDSLDKALKVRGLNQDCCVVYRLIKGRKTVTAWDTATAPLDGEELIVEVL',

target = 'ARAF")

There are two ways how AlignmentGenerator can be initialized: either with a sequence, or from a fasta file. Both
ways are shown above.

In the next step we use this sequence to generate an initial alignment:

gen.get_suggestion()
Querying PDB...

Query successful, 16 found!

Retrieving sequences...
Sequences succefully retrieved!

Generating alignment...
Alignment generated!

As we can see from the output, we are querying the PDB and extracting potential templates. Then, an alignment is
generated.

We can have a first look at the suggested templates as such:
gen. show_suggestion()

template coverage identity

0 1C1Y_2 100.0 60.27
1 1GUA_2 100.0 60.27
2 4GON_2 100.0 60.27
3 4G3X_2 100.0 60.27
4 6V]i_2 100.0 60.27
5 6XGU_2 100.0 60.27
6 6XGV_2 100.0 60.27
7 6XHA_2 100.0 60.27
8 6XHB_2 100.0 60.27
9 6XI7_2 100.0 60.27
10 7JHP_2 100.0 60.27
11 3KUC_2 100.0 58.90
12 3KUD_2 100.0 58.90
13 3NY5_1 100.0 58.90
14 o6NTD_2 100.0 53.42
15 6NTC_2 100.0 52.05

gen.alignment.print_clustal(70)

ARAF e GTVKVYLPNKQRTVVTVRDGMSVYDSLDKALKVRGLNQDCCVVYRLI ---KGRKTVT
1c1y.2 - SNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL

(continues on next page)

2.8. Tutorial 8: Automatic Alignment Generation 63

homelette

(continued from previous page)

1GUA_2 - PSKTSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
3kKuC_.2 -—----—- PSKTSNTIRVFLPNKQRTVVRVRNGMSLHDCLMKKLKVRGLQPECCAVFRLLHEHKGKKARL
3KUD_2 ~ -------- PSKTSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKKLKVRGLQPECCAVFRLLHEHKGKKARL
3NY5_1 MGHHHHHHSHMQKPIVRVFLPNKQRTVVPARCGVTVRDSLKKALMMRGLIPECCAVYRIQ---DGEKKPI
4GON_2 - TSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
4G3X_2 @ - SNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
6NTC_2 - GAMDSNTIRVLLPNQEWTVVKVRNGMSLHDSLMKALKRHGLQPESSAVFRLLHEHKGKKARL
6NTD_2 ~ -------- GAMDSNTIRVLLPNHERTVVKVRNGMSLHDSLMKALKRHGLQPESSAVFRLLHEHKGKKARL
6v3i_2 - SKTSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
6XGUu_2 = - SKTSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
6XGv_2 = - SKTSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
6XHA_Z2 - SKTSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
6XHB_2 @ -------—- SKTSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
6XI17_.2 - SKTSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
7JHP_2 e SNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
ARAF AWDTAIAPLDGEELIVEVL - - - - - - o e e e e e o e e e
1C1Y_2 DWNTDAASLIGEELQVDFL-------mmm e e e o e e e e e
1GUA_2 DWNTDAASLIGEELQVDFL - === —mmm o oo
3KUC_2 DWNTDAASLIGEELQVDFL - === mm oo e e
3KUD_2 DWNTDAASLIGEELQVDFL---------— = mmmmm oo
3NY5_1 GWDTDISWLTGEELHVEVLENVPLTTHNF-------------m oo
4GON_2 DWNTDAASLIGEELQVDFL - === == m e o e o e e e e e e e e e e
4G3X_2 DWNTDAASLIGEELQVDFL-----—————mm oo
6NTC_2 DWNTDAASLIGEELQVDF L - === —mmmm oo e
6NTD_2 DWNTDAASLIGEELQVDFL------ - oo e e
6V3J1_2 DWNTDAASLIGEELQVDFL - == === = - mmm e e e e e e e
6XGU_2 DWNTDAASLIGEELQVDFLDHVPLTTHNFARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKVPT
6XGV_2 DWNTDAASLIGEELQVDFLDHVPLTTHNFARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKVPT
6XHA_2 DWNTDAASLIGEELQVDFLDHVPLTTHNFARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKVPT
6XHB_2 DWNTDAASLIGEELQVDFLDHVPLTTHNFARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKVPT
6XI7_2 DWNTDAASLIGEELQVDFLDHVPLTTHNFARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKVPT
7JHP_2 DWNTDAASLIGEELQVDFLDHVPLTTHNFARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKVPT
ARAF -
1c1y.2 ------
1GUA_2 -—-----
3KuC_.2~ ------
3KUD_2 ~ ------
3NY5_1 -
4GON_2 -
4G3X_.2 @ ---——-
6NTC_2 ~ ------
6NTD_2 ~ -————--
6vii_2 ------
6XGU_2 MCVDWS
6XGV_2 MCVDWS
6XHA_2 MCVDWS
6XHB_2 MCVDWS
6XI7_2 MCVDWS

(continues on next page)

64 Chapter 2. Tutorials

homelette

(continued from previous page)

7JHP_2 MCVDW-

After potentially filtering out some sequences, we can proceed with the next step: downloading the structures for our
templates, comparing the sequences of the templates with the residues present in the template structure and make
adjustments to both the structure and the alignment if necessary.

[6]: gen.get_pdbs()

Guessing template naming format...
Template naming format guessed: polymer_entity!

Checking template dir...
Template dir found!

Processing templates:

1C1Y downloading from PDB...
1C1Y downloaded!

1C1Y_B: Chain extracted!
1C1Y_B: Alignment updated!
1C1Y_B: PDB processed!

1GUA downloading from PDB...
1GUA downloaded!

1GUA_B: Chain extracted!
1GUA_B: Alignment updated!
1GUA_B: PDB processed!

3KUC downloading from PDB...
3KUC downloaded!

3KUC_B: Chain extracted!
3KUC_B: Alignment updated!
3KUC_B: PDB processed!

3KUD downloading from PDB...
3KUD downloaded!

3KUD_B: Chain extracted!
3KUD_B: Alignment updated!
3KUD_B: PDB processed!

3NY5 downloading from PDB...
3NY5 downloaded!

3NY5_A: Chain extracted!
3NY5_A: Alignment updated!
3NY5_A: PDB processed!
3NY5_B: Chain extracted!
3NY5_B: Alignment updated!
3NY5_B: PDB processed!
3NY5_C: Chain extracted!
3NY5_C: Alignment updated!
3NY5_C: PDB processed!
3NY5_D: Chain extracted!
3NY5_D: Alignment updated!
3NY5_D: PDB processed!

4GON downloading from PDB...

(continues on next page)

2.8. Tutorial 8: Automatic Alignment Generation 65

homelette

4GON downloaded!

4GON_B: Chain extracted!
4GON_B: Alignment updated!
4GON_B: PDB processed!

4G3X downloading from PDB...

4G3X downloaded!

4G3X_B: Chain extracted!
4G3X_B: Alignment updated!
4G3X_B: PDB processed!

6NTC downloading from PDB...

6NTC downloaded!

6NTC_B: Chain extracted!
6NTC_B: Alignment updated!
6NTC_B: PDB processed!

6NTD downloading from PDB...

6NTD downloaded!

6NTD_B: Chain extracted!
6NTD_B: Alignment updated!
6NTD_B: PDB processed!

6V]] downloading from PDB...

6V]] downloaded!

6VJJ_B: Chain extracted!
6V]]_B: Alignment updated!
6V]JJ_B: PDB processed!

6XGU downloading from PDB...

6XGU downloaded!

6XGU_B: Chain extracted!
6XGU_B: Alignment updated!
6XGU_B: PDB processed!

6XGV downloading from PDB...

6XGV downloaded!

6XGV_B: Chain extracted!
6XGV_B: Alignment updated!
6XGV_B: PDB processed!

6XHA downloading from PDB...

6XHA downloaded!

6XHA_B: Chain extracted!
6XHA_B: Alignment updated!
6XHA_B: PDB processed!

6XHB downloading from PDB...

6XHB downloaded!

6XHB_B: Chain extracted!
6XHB_B: Alignment updated!
6XHB_B: PDB processed!

6XI7 downloading from PDB...

6XI7 downloaded!

6XI7_B: Chain extracted!
6XI7_B: Alignment updated!
6XI7_B: PDB processed!

7JHP downloading from PDB...

7JHP downloaded!
7JHP_C: Chain extracted!

(continued from previous page)

(continues on next page)

66

Chapter 2. Tutorials

homelette

(continued from previous page)

7JHP_C: Alignment updated!
7JHP_C: PDB processed!

Finishing... All templates successfully
downloaded and processed!

Templates can be found in
"/home/homelette/workdir/templates".

get_pdbs will check all chains of a template and download those with the correct sequence.

[7]: gen.alignment.print_clustal(70)

ARAF e GTVKVYLPNKQRTVVTVRDGMSVYDSLDKALKVRGLNQDCCVVYRLI ---KGRKTVT
1C1Y. B - SNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
1GUALB - NTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
3KUCCB - NTIRVFLPNKQRTVVRVRNGMSLHDCLMKKLKVRGLQPECCAVFRLLHEHKGKKARL
3KUD.B —==—————————- NTIRVFLPNKQRTVVNVRNGMSLHDCLMKKLKVRGLQPECCAVFRLLHEHKGKKARL
3NY5_A - H-QKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRIQ------ KKPI
3NY5. B - SH-QKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRIQ----- EKKPT
3NY5.C = - QKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRIQ------ KKPI
3NY5.D @ - H-QKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRI------~ KKPI
4GON.B - TSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
4G3X_ B @ - SNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
6NTC_B ~ ————————————- NTIRVLLPNQEWTVVKV---MSLHDSLMKALKRHGLQPESSAVF--------- KARL
6NTD B - SNTIRVLLPNHERTVVKVRNGMSLHDSLMKALKRHGLQPESSAVF-----——---- RL
6VJJ B = - SNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
6XGU B @ - SNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPE-CAVFRLLHEHKGKKARL
6XGV.B - SNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPE-CAVFRLLHEHKGKKARL
6XHA B - SNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPE-CAVFRLLHEHKGKKARL
6XHB_.B @ --—-———————- SNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPE-CAVFRLLHEHKGKKARL
6XI7. B - NTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLH----KKARL
7JHP_C - SNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLL--~--~ KKARL
ARAF AWDTAIAPLDGEELIVEVL - - - - - - o m o e e e e e e
1C1Y_B DWNTDAASLIGEELQVDFL - === —mmm o oo
1GUA_B DWNTDAASLIGEELQVDFL - - - mm oo
3KUC_B DWNTDAASLIGEELQVDFL---------— - mmmm oo
3KUD_B DWNTDAASLIGEELQVDFL - == === m e e e e e e e e e e
3NY5_A GWDTDISWLTGEELHVEVLENVPLT------ - m e e o e e e e e
3NY5_B GWDTDISWLTGEELHVEVLENVPLTTH----------—— == oo
3NY5_C GWDTDISWLTGEELHVEVLENVPLTTH- - mm e oo
3NY5_D GWDTDISWLTGEELHVEVLENVPL--------mmm e
4GON_B DWNTDAASLIGEELQVDFL---=== = mm e e e e e e e e
4G3X_B DWNTDAASLIGEELQVDFL - === === mm e o e o e e e e e
6NTC_B DWNTDAASLIGEELQVDF-----—————mmm oo
6NTD_B DWNTDAASLIGEELQVD - === mmm o e oo e
6V]I_B DWNTDAASLIGEELQVDFL------- oo e
6XGU_B DWNTDAASLIGEELQVDFLDHVPLTTHNFARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKVPT
6XGV_B DWNTDAASLIGEELQVDFLDHVPLTTHNFARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKVPT
6XHA_B DWNTDAASLIGEELQVDFLDHVPLTTHNFARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKVPT
6XHB_B DWNTDAASLIGEELQVDFLDHVPLTTHNFARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKVPT
6XI7_B DWNTDAASLIGEELQVDFLDHVPLTTHNFARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKVPT

(continues on next page)

2.8. Tutorial 8: Automatic Alignment Generation 67

[8]:

[9]:

[9]:

homelette

7JHP_C

(continued from previous page)

DWNTDAASLIGEELQVDFLDH--LTTHNFARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKVPT

MCVDWS
MCVDWS
MCVDWS
MCVDWS
MCV---
MCVDW-

Now we can directly use these template for homology modelling:

initialize task

t = gen.initialize_task(task_name = 'Tutorial8', overwrite = True)

create a model per template
[temp for temp in t.alignment.sequences.keys() if temp != 'ARAF']
for template in templates:
t.execute_routine(

tag = f'test_{template

templates =

routine = hm.routines.Routine_automodel_default,
templates = [template],

template_location = './templates/'

inspect models

t.models

[<homelette
<homelette
<homelette
<homelette
<homelette
<homelette
<homelette
<homelette

.organization.
.organization.
.organization.
.organization.
.organization.
.organization.
.organization.
.organization.

Model
Model
Model
Model
Model
Model
Model
Model

at
at
at
at
at
at
at
at

0x7£22492£4340>,
0x7£22492£45b0>,
0x7£229829a610>,
0x7£2273b6afald>,
0x7£2273b38eel>,
0x7£22491c0e50>,
0x7£22491bf070>,
0x7£22491b£880>,

(continues on next page)

68

Chapter 2. Tutorials

[10]:

[11]:

homelette

<homelette
<homelette
<homelette
<homelette
<homelette
<homelette
<homelette

.organization.
.organization.
.organization.
.organization.
.organization.
.organization.
.organization.

Model
Model
Model
Model
Model
Model
Model

at
at
at
at
at
at
at

(continued from previous page)

0x7£22491c5760>,
0x7£22491c5a00>,
0x7£22491c8310>,
0x7£22491c8820>,
0x7£22491b0£10>,
0x7£22491c96a0>,
0x7£22491c9b80>,

Model
Model
Model
Model

<homelette
<homelette
<homelette
<homelette

at
at
at
at

0x7£22491c8af0>,
0x7£22492£49d0>,
0x7£22491bfbel®>,
0x7£2273b38040>]

.organization.
.organization.
.organization.
.organization.

2.8.3 Method 2: HHSuite

This class is build on the hhblits query function of the HHSuite3 [5].

This has the same interface as AlignmentGenerator_pdb, except some different settings for the alignment generation
with get_pdbs.

It should also be noted that technically, this approach does not generate a multiple sequence alignment, but rather a
combined alignment of lots of pairwise alignments of query to template. These pairwise alignments are combined on
the common sequence they are all aligned to.

(This code is commented out since it requires big databases to run, which are not part of the docker container.)

gen = hm.alignment.AlignmentGenerator_hhblits. from fasta('data/alignments/ARAF. fa")
gen.get_suggestion(database_dir='/home/philipp/Downloads/hhsuite_dbs/")

gen.get_pdbs()

gen.show_suggestion()

t = gen.initialize_task()

2.8.4 Method 3: Using pre-computed alignments

If you already have an alignment computed, but want to make use of get_pdbs in order to download the templates
and process the alignment and the template structures, there is also the possibility to load your alignment into an
AlignmentGenerator object:

initialize an alignment generator from a pre-computed alignemnt
gen = hm.alignment.AlignmentGenerator_from_aln(
alignment_file = 'data/alignments/unprocessed.fasta_aln',
target = "ARAF')

gen.show_suggestion()
gen.alignment.print_clustal(70)
gen.get_pdbs()
gen.alignment.print_clustal(70)

ARAF e GTVKVYLPNKQRTVVTVRDGMSVYDSLDKALKVRGLNQDCCVVYRLI---KGRKTVT
3NY5 MGHHHHHHSHMQKPIVRVFLPNKQRTVVPARCGVTVRDSLKKALMMRGLIPECCAVYRIQ---DGEKKPI
4GON = - TSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL

(continues on next page)

2.8. Tutorial 8: Automatic Alignment Generation 69

homelette

ARAF AWDTAIAPLDGEELIVEVL----------
3NY5 GWDTDISWLTGEELHVEVLENVPLTTHNF
4GON DWNTDAASLIGEELQVDFL----------

Guessing template naming format...
Template naming format guessed: entry!

Checking template dir...
Template dir found!

Processing templates:

3NY5 downloading from PDB...
3NY5 downloaded!

3NY5_A: Chain extracted!
3NY5_A: Alignment updated!
3NY5_A: PDB processed!
3NY5_B: Chain extracted!
3NY5_B: Alignment updated!
3NY5_B: PDB processed!
3NY5_C: Chain extracted!
3NY5_C: Alignment updated!
3NY5_C: PDB processed!
3NY5_D: Chain extracted!
3NY5_D: Alignment updated!
3NY5_D: PDB processed!

4GON downloading from PDB...
4GON downloaded!

4GON_B: Chain extracted!
4GON_B: Alignment updated!
4GON_B: PDB processed!

Finishing... All templates successfully
downloaded and processed!
Templates can be found in

(continued from previous page)

"./templates/".
ARAF - GTVKVYLPNKQRTVVTVRDGMSVYDSLDKALKVRGLNQDCCVVYRLI---KGRKTVT
3NY5,A - H-QKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRIQ------ KKPI
3NY5. B @ - SH-QKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRIQ----- EKKPI
3NY5.C = - QKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRIQ------ KKPI
3NY5.D @ - H-QKPIVRVFLPNKQRTVVPARCGVTVRDSLKKAL--RGLIPECCAVYRI------- KKPI
4GON.B ~ - TSNTIRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL
ARAF AWDTATAPLDGEELIVEVL----------
3NY5_A GWDTDISWLTGEELHVEVLENVPLT----
3NY5_B GWDTDISWLTGEELHVEVLENVPLTTH--
3NY5_C GWDTDISWLTGEELHVEVLENVPLTTH--
3NY5_D GWDTDISWLTGEELHVEVLENVPL-----
4GON_B DWNTDAASLIGEELQVDFL----------
(continues on next page)
70 Chapter 2. Tutorials

homelette

(continued from previous page)

Again, for every template structure, homelette is finding which chains fit to the sequence and then extract all of them.

Of course, if your alignment and template(s) are already processed, it is perfectly fine to use the Alignment class
directly as we have done in the previous tutorials.

2.8.5 Implementing own methods

While not discussed in Tutorial 4, AlignmentGenerator object are also building blocks in the homelette frame-
work and custom versions can be implemented. All AlignmentGenerator children classes so far inherit from the
AlignmentGenerator abstract base class, which contains some useful functionality for writing your own alignment
generations, in particular the get_pdbs function.

2.8.6 Further Reading

Congratulation on finishing the tutorial about alignment generation in homelette.

Please note that there are other tutorials, which will teach you more about how to use homelette.
¢ Tutorial 1: Learn about the basics of homelette.
 Tutorial 2: Learn more about already implemented routines for homology modelling.
* Tutorial 3: Learn about the evaluation metrics available with homelette.

* Tutorial 4: Learn about extending homelette’s functionality by defining your own modelling routines and
evaluation metrics.

 Tutorial 5: Learn about how to use parallelization in order to generate and evaluate models more efficiently.
 Tutorial 6: Learn about modelling protein complexes.

 Tutorial 7: Learn about assembling custom pipelines.

2.8.7 References

[1] Rose, Y., Duarte, J. M., Lowe, R., Segura, J., Bi, C., Bhikadiya, C., Chen, L., Rose, A. S., Bittrich, S., Burley, S.
K., & Westbrook, J. D. (2021). RCSB Protein Data Bank: Architectural Advances Towards Integrated Searching and
Efficient Access to Macromolecular Structure Data from the PDB Archive. Journal of Molecular Biology, 433(11),
166704. https://doi.org/10.1016/J.JMB.2020.11.003

[2] Steinegger, M., & Soding, J. (2017). MMseqs2 enables sensitive protein sequence searching for the analysis of
massive data sets. Nature Biotechnology 2017 35:11, 35(11), 1026—-1028. https://doi.org/10.1038/nbt.3988

[3] Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M.,
Soding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple
sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. https://doi.org/10.1038/MSB.
2011.75

[4] Sievers, F., & Higgins, D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences.
Protein Science, 27(1), 135-145. https://doi.org/10.1002/PR0O.3290

[5] Steinegger, M., Meier, M., Mirdita, M., Vohringer, H., Haunsberger, S. J., & Soding, J. (2019). HH-suite3 for fast
remote homology detection and deep protein annotation. BMC Bioinformatics, 20(1), 1-15. https://doi.org/10.1186/
S12859-019-3019-7/FIGURES/7

2.8. Tutorial 8: Automatic Alignment Generation 71

https://doi.org/10.1016/J.JMB.2020.11.003
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1038/MSB.2011.75
https://doi.org/10.1038/MSB.2011.75
https://doi.org/10.1002/PRO.3290
https://doi.org/10.1186/S12859-019-3019-7/FIGURES/7
https://doi.org/10.1186/S12859-019-3019-7/FIGURES/7

[12]:

homelette

2.8.8 Session Info

session info
import session_info

session_info.show(html = False, dependencies = True)

homelette
pandas
session_info

anyio

asttokens

attr

babel

backcall

certifi

chardet
charset_normalizer
comm

cycler
cython_runtime
dateutil

debugpy

decorator
executing
fastjsonschema
idna
importlib_metadata
importlib_resources
ipykernel
ipython_genutils
jedi

jinja2

json5

jsonschema
jupyter_events
jupyter_server
jupyterlab_server
kiwisolver
markupsafe
matplotlib
modeller
more_itertools
mpl_toolkits
nbformat

numexpr

numpy

ost

packaging

parso

)
S v b
S w

7.0.0

o
N W
=]

.0

022.12.07

DD W WNNSDN =
R R NN
N S D

=

s .
—_
o -
(=]

D R, DN
N B O 0
SN O N

w
15N

= W NRFRDNNSD
= R, @ N D O -
.-e-.\l
NNR:» @ WwW:-
(=] w

(=)
W~

(continues on next page)

72

Chapter 2. Tutorials

homelette

pexpect
pickleshare
pkg_resources
platformdirs
prometheus_client
promod3
prompt_toolkit
psutil

ptyprocess
pure_eval
pydev_ipython
pydevconsole
pydevd
pydevd_file_utils
pydevd_plugins
pydevd_tracing
pygments
pyparsing
pyrsistent
pythonjsonlogger
pytz

qmean

requests
rfc3339_validator
rfc3986_validator
send2trash
sitecustomize

six

sniffio
stack_data
swig_runtime_data4
tornado

traitlets

urllib3

wcwidth

websocket

yaml

zipp

zmq

IPython
jupyter_client
jupyter_core
jupyterlab
notebook

Python 3.8.10 (default, Nov 14 2022,
Linux-4.15.0-206-generic-x86_64-with-glibc2.29

Session information updated at 2023-03-15 23:40

2.14.0

2.4

.6

12:59:47) [GCC 9.4.0]

(continued from previous page)

2.8. Tutorial 8: Automatic Alignment Generation

73

homelette

74

Chapter 2. Tutorials

CHAPTER
THREE

API DOCUMENTATION

This is the documentation for all classes, methods and functions in homelette.

3.1 homelette.organization

The homelette.organization submodule contains classes for organizing workflows.
Task is an object orchestrating model generation and evaluation.

Model is an object used for storing information about generated models.

3.1.1 Tutorials

For an introduction to homelette’s workflow, Tutorial I is useful. Assembling custom pipelines is discussed in Tutorial
7.

3.1.2 Classes

The following classes are part of this submodule:

Task Model

class homelette.organization.Task(task_name: str, target: str, alignment: Type[Alignment], task_directory:
str = None, overwrite: bool = False)

Class for directing modelling and evaluation.
It is designed for the modelling of one target sequence from one or multiple templates.

If an already existing folder with models is specified, the Task object will load those models in automatically. In
this case, it can also be used exclusively for evaluation purposes.

Parameters
* task_name (str)— The name of the task
* target (str)— The identifier of the protein to model
* alignment (Alignment) — The alignment object that will be used for modelling

» task_directory (str, optional) — The directory that will be used for this modelling
task (default is creating a new one based on the task_name)

75

homelette

» overwrite (bool, optional) — Boolean value determining if an already existing
task_directory should be overwriten. If a directory already exists for a given task_name
or task_directory, this will determine whether the directory and all its contents will be over-
written (True), or whether the contained models will be imported (False) (default is False)

Variables
e task_name (str) — The name of the task

* task_directory (str) — The directory that will be used for this modelling task (default is
to use the task_name)

* target (str) — The identifier of the protein to model

e alignment (Alignment) — The alignment object that will be used for modelling
» models (1ist) — List of models generated or imported by this task

» routines (1ist) — List of modelling routines executed by this task

Return type
None

execute_routine(rag: str, routine: Type[routines.Routine], templates: Iterable, template_location: str ="',
**kwargs) — None

Generates homology models using a specified modelling routine
Parameters

* tag (str)—The identifier associated with this combination of routine and template(s). Has
to be unique between all routines executed by the same task object

¢ routine (Routine) — The routine object used to generate the models

e templates (1ist) — The iterable containing the identifier(s) of the template(s) used for
model generation

* template_location (str, optional)— The location of the template PDB files. They
should be named according to their identifiers in the alignment (i.e. for a sequence named
“IWXN” to be used as a template, it is expected that there will be a PDB file named
“IWXN.pdb” in the specified template location (default is current working directory)

» **kwargs — Named parameters passed directly on to the Routine object when the mod-
elling is performed. Please check the documentation in order to make sure that the param-
eters passed on are available with the Routine object you intend to use

Return type
None

evaluate_models (*args: Type[evaluation.Evaluation], n_threads: int = 1) — None

Evaluates models using one or multiple evaluation metrics
Parameters
* *args (Evaluation) — Evaluation objects that will be applied to the models

e n_threads (int, optional) - Number of threads used for model evaluation (default is
1, which deactivates parallelization)

Return type
None

76 Chapter 3. APl Documentation

homelette

get_evaluation() — pandas.DataFrame

Return evaluation for all models as pandas dataframe.

Returns
Dataframe containing all model evaluation

Return type
pd.DataFrame

class homelette.organization.Model (model_file: str, tag: str, routine: str)

Interface used to interact with created protein structure models.

Parameters
* model_file (str) — The file location of the PDB file for this model

* tag (str) — The tag that was used when generating this model (see Task.
execute_routine for more details)

» routine (str) — The name of the routine that was used to generate this model

Variables
» model_file (str) — The file location of the PDB file for this model

* tag (str)— The tag that was used when generating this model (see Task.execute_routine for
more details)

» routine (str)— The name of the routine that was used to generate this model

* info (dict) - Dictionary that can be used to store metadata about the model (i.e. for some
evaluation metrics)

Return type
None

parse_pdb() — pandas.DataFrame

Parses ATOM and HETATM records in PDB file to pandas dataframe Useful for giving some evaluations
methods access to data from the PDB file.

Return type
pd.DataFrame

Notes

Information is extracted according to the PDB file specification (version 3.30) and columns are named
accordingly. See https://www.wwpdb.org/documentation/file-format for more information.

get_sequence() — str
Retrieve the 1-letter amino acid sequence of the PDB file associated with the Model object.

Returns
Amino acid sequence

Return type
str

rename (new_name: str) — None
Rename the PDB file associated with the Model object.

Parameters
new_name (str)— New name of PDB file

3.1. homelette.organization 77

https://www.wwpdb.org/documentation/file-format

homelette

Return type
None

3.2 homelette.alignment

The homelette.alignment submodule contains a selection of tools for handling sequences and alignments, as well
as for the automatic generation of sequences from a target sequence.

3.2.1 Tutorials

Basic handing of alignments with homelette is demonstrated in Tutorial 1. The assembling of alignments for complex
modelling is discussed in Tutorial 6. The automatic generation of alignments is shown in Turorial 8.

3.2.2 Functions and classes

Functions and classes present in homelette.alignment are listed below:

Alignment Sequence AlignmentGenerator AlignmentGenerator_pdb
AlignmentGenerator_hhblits AlignmentGenerator_from_aln assemble_complex_aln()

class homelette.alignment.Alignment (file_name: Optional[str] = None, file_format: str = 'fasta")

Bases: object
Class for managing sequence alignments.
Parameters

o file_name (str, optional) — The file to read the alignment from. If no file name is
given, an empty alignment object will be created (default None)

o file_format (str, optional)— The format of the alignment file. Can be ‘fasta’ or ‘pir’
(default ‘fasta’)

Variables
sequences (dict) — Collection of sequences. Sequences names are the dictionary keys, Se-
quence objects the values

Raises
ValueError - File_format specified is not ‘fasta’ or ‘pir’

get_sequence (sequence_name: str) — Type[Sequence]
Retrieve sequence object by sequence name.

Parameters
sequence_name (str)— Name of sequence to retrieve

Return type
Sequence

select_sequences (sequence_names: Iterable) — None
Select sequences to remain in the alignment by sequence name

Parameters
sequence_names (iterable) — Iterable of sequence names

78 Chapter 3. APl Documentation

homelette

Return type
None

Raises
KeyError - Sequence name not found in alignment

remove_sequence (sequence_name: str) — None

Remove a sequence from the alignment by sequence name.

Parameters
sequence_name (str)— Sequence name to remove from alignment

Return type
None

rename_sequence (old_name: str, new_name: str) — None

Rename sequence in the alignment
Parameters
¢ old_name (str) — Old name of sequence
* new_name (str) — New name of sequence

Return type
None

write_pir (file_name: str, line_wrap: int = 50) — None
Write alignment to file in the PIR file format.

Parameters
o file_name (str) — File name to write to
e line_wrap (int) — Characters per line (default 50)

Return type
None

write_fasta(file_name: str, line_wrap: int = 80) — None

Write alignment to file in the FASTA alignment file format.
Parameters
e file_name (str) — File name to write to
¢ line_wrap (int) — Characters per line (default 80)

Return type
None

print_clustal (line_wrap: int = 80) — None

Print alignment to console in the clustal file format.

Parameters
line_wrap (int) — Characters per line (default 80)

Return type
None

write_clustal (file_name: str, line_wrap: int = 50) — None

Write alignment to file in the clustal file format.

Parameters

3.2. homelette.alignment

79

homelette

e file_name (str) — File name to write to
¢ line_wrap (int) — Characters per line (default 50)

Return type
None

remove_redundant_gaps () — None

Remove gaps in the alignment that are present in every column.

Return type
None

replace_sequence (seq_name: str, new_sequence: str) — None
Targeted replacement of sequence in alignment.

Parameters
* seq_name (str) — The identifier of the sequence that will be replaced.

* new_sequence (str) — The new sequence.

Notes

This replacement is designed to introduce missing residues from template structures into the alignment and
therefore has very strict requirements. The new and old sequence have to be identical, except that the new
sequence might contain unmodelled residues. These are indicated by the letter ‘X’ in the new sequence,
and will result in a gap ‘-’ in the alignment after replacement. It is important that all unmodelled residues,
even at the start or beginning of the template sequence are correctly labeled as ‘X’.

Examples

>>> aln = hm.Alignment (None)

>>> aln.sequences = {
'seql': hm.alignment.Sequence('seql', '"AAAACCCCDDDD'),
'seq2': hm.alignment.Sequence('seq2', 'AAAAEEEEDDDD'),
'seq3': hm.alignment.Sequence('seq3', 'AAAA----DDDD')

- }

>>> replacement_seql = '"AAAAXXXXXDDD'

>>> replacement_seq3 = "AAXXXXDD'

>>> aln.replace_sequence('seql', replacement_seql)

>>> aln.print_clustal()

seql AAAA----- DDD
seq2 AAAAEEEEDDDD
seq3 AAAA----DDDD

>>> aln.replace_sequence('seq3', replacement_seq3)
>>> aln.print_clustal()

seql AAAA----- DDD
seq2 AAAAEEEEDDDD
seq3 AA--—————- DD

calc_identity(sequence_name_lI: str, sequence_name_2: str) — float
Calculate sequence identity between two sequences in the alignment.

Parameters

* sequence_name_1 (str) — Sequence pair to calculate identity for

80 Chapter 3. APl Documentation

homelette

* sequence_name_2 (str) — Sequence pair to calculate identity for

Returns
identity — Sequence identity between the two sequences

Return type
float

See also:

calc_identity_target, calc_pairwise_identity_all

Notes

There are mutiple ways of calculating sequence identity, which can be useful in different situations. Here
implemented is one way which makes a lot of sence for evaluating templates for homology modelling. The
sequence identity is calculated by dividing the number of matches by the length of sequence 1 (mismatches
and gaps are handled identically, no gap compression).

matches

d—
sedt length(sequencel)

Examples

Gaps and mismatches are treated equally.

>>> aln = hm.Alignment (None)

>>> aln.sequences = {
'seql': hm.alignment.Sequence('seql', "AAAACCCCDDDD'),
'seq2': hm.alignment.Sequence('seq2', 'AAAAEEEEDDDD'),
'seq3': hm.alignment.Sequence('seq3', 'AAAA----DDDD')

- }

>>> aln.calc_identity('seql', 'seqg2')
66.67

>>> aln.calc_identity('seql', 'seq3')
66.67

Normalization happens for the length of sequence 1, so the order of sequences matters.

>>> aln = hm.Alignment (None)

>>> aln.sequences = {
'seql': hm.alignment.Sequence('seql', 'AAAACCCCDDDD'),
'seq2': hm.alignment.Sequence('seq3', 'AAAA----DDDD')

. }

>>> aln.calc_identity('seql', 'seqg2')
66.67

>>> aln.calc_identity('seq2', 'seql')
100.0

calc_pairwise_identity_all() — Type[pandas.DataFrame]
Calculate identity between all sequences in the alignment.

Returns
identities — Dataframe with pairwise sequence identites

3.2. homelette.alignment 81

homelette

Return type
pd.DataFrame

See also:

calc_identity, calc_identity_target

Notes

Calculates sequence identity as descripted for calc_identity:

matches

d —
sedt length(sequencel)

calc_identity_target (sequence_name: str) — Type[pandas.DataFrame]

Calculate identity of all sequences in the alignment to specified target sequence.

Parameters
sequence_name (str)— Target sequence

Returns
identities — Dataframe with pairwise sequence identities

Return type
pd.DataFrame

See also:

calc_identity, calc_pairwise_identity_all

Notes

Calculates sequence identity as descripted for calc_identity:

matches

d—
sedt length(sequencel)

calc_coverage (sequence_name_l1: str, sequence_name_2: str) — float

Calculation of coverage of sequence 2 to sequence 1 in the alignment.
Parameters
* sequence_name_1 (str) — Sequence pair to calculate coverage for
* sequence_name_2 (str) — Sequence pair to calculate coverage for

Returns
coverage — Coverage of sequence 2 to sequence 1

Return type
float

See also:

calc_coverage_target, calc_pairwise_coverage_all

82 Chapter 3. APl Documentation

homelette

Notes

Coverage in this context means how many of the residues in sequences 1 are assigned a residue in sequence
2. This is useful for evaluating potential templates, because a low sequence identity (as implemented in
homelette) could be caused either by a lot of residues not being aligned at all, or a lot of residues being
aligned but not with identical residues.

aligned residues

coverage = length(sequencel)

Examples

Gaps and mismatches are not treated equally.

>>> aln = hm.Alignment (None)

>>> aln.sequences = {
'seql': hm.alignment.Sequence('seql', 'AAAACCCCDDDD'),
'seq2': hm.alignment.Sequence('seq2', 'AAAAEEEEDDDD'),
'seq3': hm.alignment.Sequence('seq3', 'AAAA----DDDD')

. }

>>> aln.calc_coverage('seql', 'seqg2')
100.0

>>> aln.calc_coverage('seql', 'seq3')
66.67

Normalization happens for the length of sequence 1, so the order of sequences matters.

>>> aln = hm.Alignment (None)

>>> aln.sequences = {
'seql': hm.alignment.Sequence('seql', "AAAACCCCDDDD'),
'seq2': hm.alignment.Sequence('seq3', 'AAAA----DDDD')

- }

>>> aln.calc_coverage('seql', 'seq2')
66.67

>>> aln.calc_coverage('seq2', 'seql')
100.0

calc_coverage_target (sequence_name: str) — Type[pandas.DataFrame]

Calculate coverage of all sequences in the alignment to specified target sequence.

Parameters
sequence_name (str) — Target sequence

Returns
coverages — Dataframe with pairwise coverage

Return type
pd.DataFrame

See also:

calc_coverage, calc_pairwise_coverage_all

3.2. homelette.alignment 83

homelette

Notes

Calculates coverage as described for calc_coverage:

aligned residues
coverage =

length(sequencel)

calc_pairwise_coverage_all() — Type[pandas.DataFrame]
Calculate coverage between all sequences in the alignment.

Returns
coverages — Dataframe with pairwise coverage

Return type
pd.DataFrame

See also:

calc_coverage, calc_coverage_target

Notes

Calculates coverage as described for calc_coverage:

aligned residues

coverage = length(sequencel)

class homelette.alignment.Sequence(name: str, sequence: str, **kwargs)
Bases: object
Class that contains individual sequences and miscellaneous information about them.
Parameters
* name (str) — Identifier of the sequence
* sequence (str) — Sequence in 1 letter amino acid code
» **kwargs — Annotations, for acceptable keys see Sequence.annotate()
Variables
* name (str) — Identifier of the sequence
* sequence (str) — Sequence in 1 letter amino acid code

» annotation (dict) — Collection of annotation for this sequence

Notes

See Sequence. annotate () for more information on the annotation of sequences.

annotate (**kwargs: str)
Change annotation for sequence object.

Keywords not specified in the Notes section will be ignored.

Parameters
kwargs (str) — Annotations. For acceptible values, see Notes.

Return type
None

84 Chapter 3. APl Documentation

homelette

Notes

Annotations are important for MODELLER in order to properly process alignment in PIR format. The
following annotations are supported and can be modified.

annota- | explanation

tion

seq_type | Specification whether sequence should be treated as a template (set to ‘structure’) or as a
target (set to ‘sequence’)

pdb_code | PDB code corresponding to sequence (if available)

be- Residue number for the first residue of the sequence in the corresponing PDB file

gin_res

be- Chain identifier for the first residue of the sequence in the corresponding PDB file

gin_chain

end_res Residue number for the last residue of the sequence in the corresponding PDB file

end_chain | Chain identifier for the last residue of the sequence in the corresponding PDB file

prot_name| Protein name, optional

prot_sourc¢ Protein source, optional

resolu- Resolution of PDB structure, optional

tion

R_factor R-factor of PDB structure, optional

Different types of annotations are required, depending whether a target or a template is annotated. For
targets, it is sufficient to seq the seq_type to ‘sequence’. For templates, it is required by MODELLER that
seq_type and pdb_code are annotated. begin_res, begin_chain, end_res and end_chain are recommended.
The rest can be left unannoted.

Examples

Annotation for a target sequence.

>>> target = hm.alignment.Sequence(name 'target', sequence

'TARGET ")
>>> target.annotation
{'seq_type': "', 'pdb_code': '', 'begin_res': '', 'begin_chain': "',
'end_res': '', 'end_chain': '', 'prot_name': '', 'prot_source': '',
'resolution': '', 'r_factor': ''}
>>> target.annotate(seq_type = 'sequence')
>>> target.annotation
{'seq_type': 'sequence', 'pdb_code': '', 'begin_res': '',
'begin_chain': '', 'end_res': '', 'end_chain': '', 'prot_name': '',
'prot_source': '', 'resolution': '', 'r_factor': ''}

Annotation for a template structure.

>>> template = hm.alignment.Sequence(name "template', sequence

'TEMPLATE")
>>> template.annotation
{'seq_type': '', 'pdb_code': '', 'begin_res': '', 'begin_chain': '',
'end_res': '', 'end_chain': '', 'prot_name': '', 'prot_source': '',
'resolution': '', 'r_factor': ''}

>>> template.annotate(seq_type 'structure', pdb_code = 'TMPL',

(continues on next page)

3.2. homelette.alignment 85

homelette

(continued from previous page)

begin_res = '1l', begin_chain = 'A', end_res = '8', end_chain =
'A")
>>> template.annotation
{'seq_type': 'structure', 'pdb_code': 'TMPL', 'begin_res': 'l"',
'begin_chain': 'A', 'end_res': '8', 'end_chain': 'A', 'prot_name': '',
'prot_source': '', 'resolution': '', 'r_factor': ''}

get_annotation_pir() — str

Return annotation in the colon-separated format expected from the PIR alignment format used by MOD-

ELLER.

Returns
Annotation in PIR format

Return type
str

Examples

>>> template = hm.alignment.Sequence(name
'TEMPLATE', seq_type = 'structure'
begin_res = 'l', begin_chain 'A'
'A")

>>> template.get_annotation_pir()

'structure:TMPL:1:A:8:A::::"'

"template', sequence
pdb_code 'TMPL',
end_res '8"', end_chain

get_annotation_print() — None

Print annotation to console

Return type
None

Examples

>>> template = hm.alignment.Sequence(name
'TEMPLATE', seq_type = 'structure'
begin_res = '1l', begin_chain 'A'
"A")

>>> template.get_annotation_print()

Sequence Type structure

PDB ID TMPL

Start Residue 1

Start Chain

End Residue

End Chain

Protein Name

Protein Source

Resolution

R-Factor

A
8
A

"template', sequence
pdb_code 'TMPL",
end_res = '8', end_chain

get_gaps() — tuple

Find gap positions in sequence

86

Chapter 3. APl Documentation

homelette

Returns
Positions of gaps in sequence

Return type
tuple

Examples

>>> seq = hm.alignment.Sequence(name = 'seq', sequence = 'SEQ-UEN--CE'")
>>> seq.get_gaps()
@3, 7, 8

remove_gaps (remove_all: bool = False, positions: Optional[lterable[int]] = None) — None

Remove gaps from the sequence.

Gaps in the alignment are symbolized by ‘-’. Removal can either happen at specific or all positions. Indexing
for specific positions is zero-based and checked before removal (raises Warning if the attempted removal
of a non-gap position is detected)

Parameters
e remove_all (bool) — Remove all gaps (default False)
e positions (iterable) — Positions to remove (zero-based indexing)

Return type
None

Warns
UserWarning — Specified position is not a gap

Examples

Example 1: remove all

>>> seq = hm.alignment.Sequence(name = 'seq', sequence = 'SEQ-UEN--CE")
>>> seq.remove_gaps(remove_all = True)

>>> seq.sequence

' SEQUENCE'

Example 2: selective removal

>>> seq = hm.alignment.Sequence(name = 'seq', sequence = 'SEQ-UEN--CE')
>>> seq.remove_gaps(positions = (7, 8))

>>> seq.sequence

'SEQ-UENCE'

class homelette.alignment.AlignmentGenerator (sequence: str, target: str = 'target', template_location: str
= "/templates/")

Bases: ABC
Parent class for the auto-generation of alignments and template selection based on sequence input.
Parameters

* sequence (str) — Target sequence in 1 letter amino acid code.

3.2. homelette.alignment 87

homelette

* target (str) — The name of the target sequence (default “target”). If longer than 14 char-
acters, will be truncated.

* template_location (str) — Directory where processed templates will be stored (default
“/templates/”).

Variables
e alignment (Alignment) — The alignment.
» target_seq (str)— The target sequence.
* target (str)— The name of the target sequence.
» template_location (str)— Directory where processed templates will be stored.
* state — Dictionary describing the state of the AlignmentGenerator object

Return type
None

abstract get_suggestion()

Generate suggestion for templates and alignment

classmethod from_fasta(fasta_file: str, template_location: str = "/templates/') — AlignmentGenerator

Generates an instance of the AlignemntGenerator with the first sequence in the fasta file.
Parameters
o fasta_file (str) — Fasta file from which the first sequence will be read.

* template_location (str)— Directory where processed templates will be stored (default
“./templates/”).

Return type
AlignmentGenerator

Raises
ValueError — Fasta file not properly formatted

show_suggestion(get_metadata: bool = False) — Type[pandas.DataFrame]

Shows which templates have been suggested by the AlignmentGenerator, as well as some useful statistics
(sequence identity, coverage).

Parameters
get_metadata (bool) — Retrieve additional metadata (experimental method, resolution,
structure title) from the RCSB.

Returns
suggestion — DataFrame with calculated sequence identity and sequence coverage for target

Return type
pd.DataFrame

Raises
RuntimeError — Alignment has not been generated yet

See also:

Alignment.calc_identity, Alignment.calc_coverage

88 Chapter 3. APl Documentation

homelette

Notes
The standard output lists the templates in the alignment and shows both coverage and sequence identity to
the target sequence. The templates are ordered by sequence identity.

In addition, the experimental method (Xray, NMR or Electron Microscopy), the resolution (if applicable)
and the title of the template structure can be retrieved from the RCSB. Retrieving metadata from the PDB

requires a working internet connecction.

select_templates (templates: Iterable) — None
Select templates from suggested templates by identifier.

Parameters
templates (iterable) — The selected templates as an interable.

Return type
None

Raises
RuntimeError — Alignment has not been generated yet

get_pdbs (pdb_format: str = "auto', verbose: bool = True) — None

Downloads and processes templates present in alignment.
Parameters
¢ pdb_format (str)— Format of PDB identifiers in alignment (default auto)
» verbose (bool) — Explain what operations are performed
Raises
¢ RuntimeError — Alignment has not been generated yet

¢ ValueError — PDB format could not be guessed

Notes

pdb_format tells the function how to parse the template identifiers in the alignment:
* auto: Automatic guess for pdb_format
* entry: Sequences are named only be their PDB identifier (i.e. 4GON)
* entity: Sequences are named in the format PDBID_ENTITY (i.e. 4GON_1)
* instance: Sequences are named in the format PDBID_CHAIN (i.e. 4GON_A)

Please make sure that all templates follow one naming convention, and that there are no sequences in the
alignment that violate the naming convention (except the target sequence).

During the template processing, all hetatms will be remove from the template, as well as all other chains. All
chains will be renamed to “A” and the residue number will be set to 1 on the first residue. The corresponding
annotations are automatically made in the alignment object.

initialize_task(task_name: ~typing.Optional[str] = None, overwrite: bool = False, task_class:
~homelette.organization. Task = <class 'homelette.organization.Task'>) — Task

Initialize a homelette Task object for model generation and evaluation.

Parameters

e task_name (str) — The name of the task to initialize. If None, initialize as mod-
els_{target}.

3.2. homelette.alignment 89

homelette

* overwrite (bool) — Whether to overwrite the task directory if a directory of the same
name already exists (default False).

¢ task_class (Task) — The class to initialize the Task with. This makes it possible to define
custom child classes of Task and construct them from this function (default Task)

Return type
Task

Raises
RuntimeError — Alignment has not been generated or templates have not been downloaded
and processed.

class homelette.alignment.AlignmentGenerator_pdb (sequence: str, target: str = 'target’,
template_location: str = '/templates/")

Bases: AlignmentGenerator

Identification of templates using the RCSB search API, generation of alignment using Clustal Omega and down-
load and processing of template structures.

Parameters
* sequence (str) — Target sequence in 1 letter amino acid code.

* target (str)— The name of the target sequence (default “target”). If longer than 14 char-
acters, will be truncated.

* template_location (str) — Directory where processed templates will be stored (default
“/templates/”).

Variables
* alignment (Alignment) — The alignment.
» target_seq (str)— The target sequence.
* target (str)— The name of the target sequence.
* template_location (str)— Directory where processed templates will be stored.
* state — Dictionary describing the state of the AlignmentGenerator object

Return type
None

Notes

The AlignmentGenerator uses the RCSB Search API' to identify potential template structures given the tar-
get sequence using MMseq2”. The sequences of the potentially downloaded and locally aligned using Clustal
Omega’*.

I Rose, Y., Duarte, J. M., Lowe, R., Segura, J., Bi, C., Bhikadiya, C., Chen, L., Rose, A. S., Bittrich, S., Burley, S. K., & Westbrook, J. D. (2021).
RCSB Protein Data Bank: Architectural Advances Towards Integrated Searching and Efficient Access to Macromolecular Structure Data from the
PDB Archive. Journal of Molecular Biology, 433(11), 166704. https://doi.org/10.1016/J.JMB.2020.11.003

2 Steinegger, M., & Soding, J. (2017). MMsegs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nature
Biotechnology 2017 35:11, 35(11), 1026-1028. https://doi.org/10.1038/nbt.3988

3 Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., S6ding, J., Thompson, J. D.,
& Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems
Biology, 7(1), 539. https://doi.org/10.1038/MSB.2011.75

4 Sievers, F., & Higgins, D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Science, 27(1),
135-145. https://doi.org/10.1002/PRO.3290

90 Chapter 3. APl Documentation

https://doi.org/10.1016/J.JMB.2020.11.003
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1038/MSB.2011.75
https://doi.org/10.1002/PRO.3290

homelette

References
get_suggestion(seq_id_cutoff: float = 0.5, min_length: int = 30, max_results: int = 50, xray_only: bool =
True, verbose: bool = True) — None

Identifies potential templates, retrieves their sequences and aligns them locally using Clustal Omega.

Parameters

* seq_id_cutoff (float) - The sequence identity cutoff for the identification of template
structures. Templates below this threshold will be ignored (default 0.5).

min_length (int) — The minimum length of template sequence to be included in the
results (default 30 amino acids).

e max_results (int) — The number of results returned (default 50).

xray_only (bool) — Only consider templates structures generated with X-ray crystallog-
raphy (default True).

¢ verbose (bool) — Explain what is done (default True).

Return type
None

Raises
RuntimeError — Alignment already generated.

classmethod from_fasta(fasta_file: str, template_location: str = "/templates/’) — AlignmentGenerator
Generates an instance of the AlignemntGenerator with the first sequence in the fasta file.

Parameters
» fasta_file (str) — Fasta file from which the first sequence will be read.

¢ template_location (str)— Directory where processed templates will be stored (default
“.Jtemplates/”).

Return type
AlignmentGenerator

Raises
ValueError - Fasta file not properly formatted

get_pdbs (pdb_format: str = ‘auto’, verbose: bool = True) — None

Downloads and processes templates present in alignment.
Parameters
* pdb_format (str)— Format of PDB identifiers in alignment (default auto)
» verbose (bool) — Explain what operations are performed
Raises
e RuntimeError — Alignment has not been generated yet

¢ ValueError — PDB format could not be guessed

3.2. homelette.alignment 91

homelette

Notes

pdb_format tells the function how to parse the template identifiers in the alignment:
* auto: Automatic guess for pdb_format
* entry: Sequences are named only be their PDB identifier (i.e. 4GON)
* entity: Sequences are named in the format PDBID_ENTITY (i.e. 4GON_1)
* instance: Sequences are named in the format PDBID_CHAIN (i.e. 4GON_A)

Please make sure that all templates follow one naming convention, and that there are no sequences in the
alignment that violate the naming convention (except the target sequence).

During the template processing, all hetatms will be remove from the template, as well as all other chains. All
chains will be renamed to “A” and the residue number will be set to 1 on the first residue. The corresponding
annotations are automatically made in the alignment object.

initialize_task(task_name: ~typing.Optional[str] = None, overwrite: bool = False, task_class:
~homelette.organization. Task = <class 'homelette.organization. Task'>) — Task

Initialize a homelette Task object for model generation and evaluation.
Parameters

¢ task_name (str) — The name of the task to initialize. If None, initialize as mod-
els_{target}.

» overwrite (bool) — Whether to overwrite the task directory if a directory of the same
name already exists (default False).

¢ task_class (Task) — The class to initialize the Task with. This makes it possible to define
custom child classes of Task and construct them from this function (default Task)

Return type
Task

Raises
RuntimeError — Alignment has not been generated or templates have not been downloaded
and processed.
select_templates (templates: Iterable) — None
Select templates from suggested templates by identifier.

Parameters
templates (iterable) — The selected templates as an interable.

Return type
None

Raises
RuntimeError — Alignment has not been generated yet

show_suggestion(ger_metadata: bool = False) — Type[pandas.DataFrame]
Shows which templates have been suggested by the AlignmentGenerator, as well as some useful statistics

(sequence identity, coverage).

Parameters
get_metadata (bool) — Retrieve additional metadata (experimental method, resolution,
structure title) from the RCSB.

Returns
suggestion — DataFrame with calculated sequence identity and sequence coverage for target

92 Chapter 3. APl Documentation

homelette

Return type
pd.DataFrame

Raises
RuntimeError — Alignment has not been generated yet

See also:

Alignment.calc_identity, Alignment.calc_coverage

Notes
The standard output lists the templates in the alignment and shows both coverage and sequence identity to
the target sequence. The templates are ordered by sequence identity.

In addition, the experimental method (Xray, NMR or Electron Microscopy), the resolution (if applicable)
and the title of the template structure can be retrieved from the RCSB. Retrieving metadata from the PDB
requires a working internet connecction.

class homelette.alignment.AlignmentGenerator_hhblits(sequence: str, target: str = 'target’,
template_location: str = "/templates/")

Bases: AlignmentGenerator

Identification of templates using hhblits to search a local PDB database, generation of alignment by combining
pairwise alignments of target and template together.

Parameters
* sequence (str) — Target sequence in 1 letter amino acid code.

* target (str) — The name of the target sequence (default “target”). If longer than 14 char-
acters, will be truncated.

* template_location (str) — Directory where processed templates will be stored (default
“/templates/”).

Variables
e alignment (Alignment) — The alignment.
» target_seq (str)— The target sequence.
* target (str)— The name of the target sequence.
* template_location (str)— Directory where processed templates will be stored.
* state — Dictionary describing the state of the AlignmentGenerator object.

Return type
None

Notes

HHblits from the HHsuite> is used to query the databases. The resulting pairwise sequence alignments of tem-
plate to target are combined using the target sequence as the master sequence. The resulting alignment is there-
fore, strictly speaking, not a proper multiple sequence alignment. However, all information from the pairwise
alignments is preserved, and for homology modelling, the alignments of templates among each others do not
have any influence.

3 Sievers, F., & Higgins, D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Science, 27(1),
135-145. https://doi.org/10.1002/PR0O.3290

3.2. homelette.alignment 93

https://doi.org/10.1002/PRO.3290

homelette

References

get_suggestion(database_dir: str = "/databases/', use_uniref: bool = False, evalue_cutoff: float = 0.001,
iterations: int = 2, n_threads: int = 2, neffmax: float = 10.0, verbose: bool = True) —
None

Use HHblits to identify template structures and create a multiple sequence alignment by combination of
pairwise alignments on target sequence.

Parameters

¢ database_dir (str) — The directory where the pdb70 (and the UniRef30) database are
stored (default ./databases/).

» use_uniref (bool) - Use UniRef30 to create a MSA before querying the pdb70 database
(default False). This leads to better results, however it takes longer and requires the
UniRef30 database on your system.

¢ evalue_cutoff (float)— E-value cutoff for inclusion in result alignment (default 0.001)
e iterations (int)— Number of iterations when querying the pdb70 database.

e n_threads (int) — Number of threads when querying the pdb70 (or UniRef30) database
(default 2).

neffmax (float) — The neffmax value used when querying the pdb70 database (default
10.0).

* verbose (bool) — Explain which operations are performed (default True).

Return type
None

Raises
RuntimeError — Alignment has already been generated.

Notes

This function expects “hhblits” to be installed and in the path. In addition, the pdb70 database needs to be
downloaded and extracted in the database_dir. The files need to be called “pdb70_*" for hhblits to correctly
find the database. If UniRef30 is used to create a pre-alignment for better results, the UniRef30 database
needs to be downloaded and extracted in the database_dir. The files need to be called “UniRef30_*”.

For more information on neffmax, please check the hhblits documentation.

If UniRef30 is used to generate a prealignment, then hhblits will be called for one iteration with standard
parameters.

classmethod from_fasta(fasta_file: str, template_location: str = "/templates/') — AlignmentGenerator

Generates an instance of the AlignemntGenerator with the first sequence in the fasta file.
Parameters
o fasta_file (str) — Fasta file from which the first sequence will be read.

e template_location (str)— Directory where processed templates will be stored (default
“/templates/”).

Return type
AlignmentGenerator

Raises
ValueError — Fasta file not properly formatted

94 Chapter 3. APl Documentation

homelette

get_pdbs (pdb_format: str = "auto’, verbose: bool = True) — None
Downloads and processes templates present in alignment.

Parameters
¢ pdb_format (str)— Format of PDB identifiers in alignment (default auto)
» verbose (bool) — Explain what operations are performed

Raises
¢ RuntimeError — Alignment has not been generated yet

¢ ValueError — PDB format could not be guessed

Notes

pdb_format tells the function how to parse the template identifiers in the alignment:
* auto: Automatic guess for pdb_format
* entry: Sequences are named only be their PDB identifier (i.e. 4GON)
* entity: Sequences are named in the format PDBID_ENTITY (i.e. 4GON_1)
* instance: Sequences are named in the format PDBID_CHAIN (i.e. 4GON_A)

Please make sure that all templates follow one naming convention, and that there are no sequences in the
alignment that violate the naming convention (except the target sequence).

During the template processing, all hetatms will be remove from the template, as well as all other chains. All
chains will be renamed to “A” and the residue number will be set to 1 on the first residue. The corresponding
annotations are automatically made in the alignment object.

initialize_task(task_name: ~typing.Optional[str] = None, overwrite: bool = False, task_class:
~homelette.organization. Task = <class 'homelette.organization.Task'>) — Task

Initialize a homelette Task object for model generation and evaluation.
Parameters

¢ task_name (str) — The name of the task to initialize. If None, initialize as mod-
els_{target}.

* overwrite (bool) — Whether to overwrite the task directory if a directory of the same
name already exists (default False).

¢ task_class (Task) — The class to initialize the Task with. This makes it possible to define
custom child classes of Task and construct them from this function (default Task)

Return type
Task

Raises
RuntimeError — Alignment has not been generated or templates have not been downloaded

and processed.

select_templates (templates: Iterable) — None
Select templates from suggested templates by identifier.

Parameters
templates (iterable) — The selected templates as an interable.

Return type
None

3.2. homelette.alignment 95

homelette

Raises
RuntimeError — Alignment has not been generated yet

show_suggestion(get_metadata: bool = False) — Type[pandas.DataFrame]

Shows which templates have been suggested by the AlignmentGenerator, as well as some useful statistics
(sequence identity, coverage).

Parameters
get_metadata (bool) — Retrieve additional metadata (experimental method, resolution,
structure title) from the RCSB.

Returns
suggestion — DataFrame with calculated sequence identity and sequence coverage for target

Return type
pd.DataFrame

Raises
RuntimeError — Alignment has not been generated yet

See also:

Alignment.calc_identity, Alignment.calc_coverage

Notes
The standard output lists the templates in the alignment and shows both coverage and sequence identity to
the target sequence. The templates are ordered by sequence identity.

In addition, the experimental method (Xray, NMR or Electron Microscopy), the resolution (if applicable)
and the title of the template structure can be retrieved from the RCSB. Retrieving metadata from the PDB
requires a working internet connecction.

class homelette.alignment.AlignmentGenerator_from_aln(alignment_file: str, target: str,
template_location: str = "/templates/',
file_format: str = fasta")

Bases: AlignmentGenerator
Reads an alignment from file into the AlignmentGenerator workflow.
Parameters
* alignment_file (str) — The file to read the alignment from.
* target (str)— The name of the target sequence in the alignment.

* template_location (str) — Directory where processed templates will be stored (default
‘/templates/’).

o file_format (str, optional)— The format of the alignment file. Can be ‘fasta’ or ‘pir’
(default ‘fasta’).

Variables
* alignment (Alignment) — The alignment.
* target_seq (str) — The target sequence.
* target (str)— The name of the target sequence.

* template_location (str)— Directory where processed templates will be stored.

state (dict) — Dictionary describing the state of the AlignmentGenerator object.

96 Chapter 3. APl Documentation

homelette

Return type
None

Notes
Useful for making use of the PDB download and processing functions that come with the AlignmentGenerator
classes.

get_suggestion()
Not implemented, since alignment is read from file on initialization.

Raises
NotImplementedError —

from_fasta(*args, **kwargs)
Not implemented, since alignment is read from file on initialization.

Raises
NotImplementedError —

get_pdbs (pdb_format: str = "auto', verbose: bool = True) — None
Downloads and processes templates present in alignment.

Parameters
* pdb_format (str)— Format of PDB identifiers in alignment (default auto)
» verbose (bool) — Explain what operations are performed

Raises
¢ RuntimeError — Alignment has not been generated yet

* ValueError — PDB format could not be guessed

Notes

pdb_format tells the function how to parse the template identifiers in the alignment:
¢ auto: Automatic guess for pdb_format
* entry: Sequences are named only be their PDB identifier (i.e. 4GON)
* entity: Sequences are named in the format PDBID_ENTITY (i.e. 4GON_1)
* instance: Sequences are named in the format PDBID_CHAIN (i.e. 4GON_A)

Please make sure that all templates follow one naming convention, and that there are no sequences in the
alignment that violate the naming convention (except the target sequence).

During the template processing, all hetatms will be remove from the template, as well as all other chains. All
chains will be renamed to “A” and the residue number will be set to 1 on the first residue. The corresponding
annotations are automatically made in the alignment object.

initialize_task(task_name: ~typing.Optional[str] = None, overwrite: bool = False, task_class:
~homelette.organization. Task = <class 'homelette.organization.Task'>) — Task

Initialize a homelette Task object for model generation and evaluation.
Parameters

e task_name (str) — The name of the task to initialize. If None, initialize as mod-
els_{target}.

3.2. homelette.alignment 97

homelette

* overwrite (bool) — Whether to overwrite the task directory if a directory of the same
name already exists (default False).

¢ task_class (Task) — The class to initialize the Task with. This makes it possible to define
custom child classes of Task and construct them from this function (default Task)

Return type
Task

Raises
RuntimeError — Alignment has not been generated or templates have not been downloaded
and processed.

select_templates (templates: Iterable) — None
Select templates from suggested templates by identifier.

Parameters
templates (iterable) — The selected templates as an interable.

Return type
None

Raises
RuntimeError — Alignment has not been generated yet

show_suggestion(get_metadata: bool = False) — Type[pandas.DataFrame]

Shows which templates have been suggested by the AlignmentGenerator, as well as some useful statistics
(sequence identity, coverage).

Parameters
get_metadata (bool) — Retrieve additional metadata (experimental method, resolution,
structure title) from the RCSB.

Returns
suggestion — DataFrame with calculated sequence identity and sequence coverage for target

Return type
pd.DataFrame

Raises
RuntimeError — Alignment has not been generated yet

See also:

Alignment.calc_identity, Alignment.calc_coverage

Notes
The standard output lists the templates in the alignment and shows both coverage and sequence identity to
the target sequence. The templates are ordered by sequence identity.

In addition, the experimental method (Xray, NMR or Electron Microscopy), the resolution (if applicable)
and the title of the template structure can be retrieved from the RCSB. Retrieving metadata from the PDB
requires a working internet connecction.

homelette.alignment.assemble_complex_aln(*args: Type[Alignment], names: dict) — Type[Alignment]
Assemble complex alignments compatible with MODELLER from individual alignments.

Parameters

* *args (Alignment) — The input alignments

98 Chapter 3. APl Documentation

homelette

* names (dict) — Dictionary instructing how sequences in the different alignment objects are
supposed to be arranged in the complex alignment. The keys are the names of the sequences
in the output alignments. The values are iterables of the sequence names from the input
alignments in the order they are supposed to appaer in the output alignment. Any value that
can not be found in the alignment signals that this position in the complex alignment should

be filled with gaps.

Returns
Assembled complex alignment

Return type
Alignment

Examples

>>> alnl = hm.Alignment (None)

>>>

>>>
>>>

>>>

>>>

alnl.sequences = {
'seql_1": hm.alignment.Sequence('seql_1",
'seq2_1": hm.alignment.Sequence('seq2_1",
'seq3_1": hm.alignment.Sequence('seq3_1",

}

aln2 = hm.Alignment (None)

aln2.sequences = {
'seq2_2": hm.alignment.Sequence('seq2_2",
'seql_2': hm.alignment.Sequence('seql_2"',

}

names = {'seql': ('seql_1",

'seq2': ('seq2_1",
'seq3': ('seq3_1',
}

alnl, aln2, names=names)

'seql_2"),
'seq2_2"),
'gaps')

>>> aln_assembled.print_clustal()

seql
seq2
seq3

HELLO/WORLD
H---I/KITTY
“HI--/-----

'HELLO"),
'"H---1'),
'_HI__I)

'KITTY"),
'"WORLD ")

aln_assembled = hm.alignment.assemble_complex_aln(

3.2. homelette.alignment

99

homelette

3.3 homelette.routines

The homelette.routines submodule contains classes for model generation. Routines are the building blocks that
are used to generate homology models.

Currently, a number of pre-implemented routines based on MODELLER, altMOD and ProMod3 are available. It is
possible to implement custom routines for model generation and use them in the homelette framework.

3.3.1 Tutorials

The basics of generating homology models with pre-implemented modelling routines are presented in Tutorial 2. Com-
plex modelling with homelette is introduced in Tutorial 6. Implementing custom modelling routines is discussed in
Tutorial 4. Assembling custom pipelines is discussed in Tutorial 7.

3.3.2 Classes

The following standard modelling routines are implemented:

Routine_automodel_default Routine_automodel_slow Routine_altmod_default
Routine_altmod_slow Routine_promod3

Modelling routines for loop modelliing:
Routine_loopmodel_default Routine_loopmodel_slow
Specifically for the modelling of complex structures, the following routines are implemented:

Routine_complex_automodel_default Routine_complex_automodel_slow
Routine_complex_altmod_default Routine_complex_altmod_slow

class homelette.routines.Routine_automodel_default (alignment: Type[Alignment], target: str,
templates: Iterable, tag: str, n_threads: int =1,
n_models: int=1)

Class for performing homology modelling using the automodel class from modeller with a default parameter set.
Parameters
* alignment (Alignment) — The alignment object that will be used for modelling
* target (str) — The identifier of the protein to model

* templates (Iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

* tag (str) — The identifier associated with a specific execution of the routine
* n_threads (int) — Number of threads used in model generation (default 1)
e n_models (int) — Number of models generated (default 1)
Variables
* alignment (Alignment) — The alignment object that will be used for modelling
* target (str)— The identifier of the protein to model

* templates (Iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

100 Chapter 3. APl Documentation

homelette

* tag (str) — The identifier associated with a specific execution of the routine

n_threads (int) — Number of threads used for model generation

e n_models (int) — Number of models generated

routine (str)— The identifier associated with a specific routine

models (1ist) — List of models generated by the execution of this routine

Raises
ImportError — Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this Routine object:
¢ n_models
¢ n_threads

The following modelling parameters are set for this class:

modelling parameter | value

model_class modeller.automodel.automodel
library_schedule modeller.automodel.autosched.normal
md_level modeller.automodel.refine.very_fast
max_var_iterations 200

repeat_optmization 1

generate_models() — None

Generate models with the parameter set automodel_default.

Return type
None

class homelette.routines.Routine_automodel_slow(alignment: Type[Alignment], target: str, templates:
Iterable, tag: str, n_threads: int = 1, n_models: int =

D
Class for performing homology modelling using the automodel class from modeller with a slow parameter set.
Parameters
* alignment (Alignment) — The alignment object that will be used for modelling
* target (str)— The identifier of the protein to model

* templates (Iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

* tag (str) — The identifier associated with a specific execution of the routine
* n_threads (int) — Number of threads used in model generation
* n_models (int) — Number of models generated
Variables
* alignment (Alignment) — The alignment object that will be used for modelling

* target (str)— The identifier of the protein to model

3.3. homelette.routines 101

homelette

» templates (Iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

* tag (str) — The identifier associated with a specific execution of the routine
* n_threads (int) — Number of threads used for model generation

* n_models (int) — Number of models generated

» routine (str) — The identifier associated with a specific routine

* models (1ist) — List of models generated by the execution of this routine

Raises
ImportError — Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this Routine object:
¢ n_models
 n_threads

The following modelling parameters are set for this class:

modelling parameter | value

model_class modeller.automodel.automodel
library_schedule modeller.automodel.autosched.slow
md_level modeller.automodel.refine.very_slow
max_var_iterations 400

repeat_optmization 3

generate_models() — None
Generate models with the parameter set automodel_slow.

Return type
None

class homelette.routines.Routine_altmod_default (alignment: Type[Alignment], target: str, templates:
Iterable, tag: str, n_threads: int = 1, n_models: int =

D

Class for performing homology modelling using the Automodel_statistical_potential class from altmod with a
default parameter set.

Parameters
* alignment (Alignment) — The alignment object that will be used for modelling
* target (str) — The identifier of the protein to model

* templates (iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

* tag (str) — The identifier associated with a specific execution of the routine
* n_threads (int) — Number of threads used in model generation
e n_models (int) — Number of models generated

Variables

102 Chapter 3. APl Documentation

homelette

* alignment (Alignment) — The alignment object that will be used for modelling
* target (str) — The identifier of the protein to model

* templates (1ist)— The iterable containing the identifier(s) of the template(s) used for the
modelling

* tag (str) — The identifier associated with a specific execution of the routine
e n_threads (int) — Number of threads used for model generation

* n_models (int) — Number of models generated

routine (str) — The identifier associated with a specific routine

models (1ist) — List of models generated by the execution of this routine

Raises
ImportError — Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this Routine object:
¢ n_models
¢ n_threads

The following modelling parameters are set for this class:

modelling parameter | value

model_class altmod.Automodel_statistical_potential
library_schedule modeller.automodel.autosched.normal
md_level modeller.automodel.refine.very_fast
max_var_iterations 200

repeat_optmization 1

Autmodel_statistical_potential uses the DOPE potential for model refinement.

generate_models() — None
Generate models with the parameter set altmod_default.

Return type
None

class homelette.routines.Routine_altmod_slow(alignment: Type[Alignment], target: str, templates:
Iterable, tag: str, n_threads: int = 1, n_models: int = 1)

Class for performing homology modelling using the Automodel_statistical_potential class from altmod with a
slow parameter set.

Parameters
e alignment (Alignment) — The alignment object that will be used for modelling
* target (str)— The identifier of the protein to model

* templates (iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

* tag (str) — The identifier associated with a specific execution of the routine

n_threads (int) — Number of threads used in model generation

3.3. homelette.routines 103

homelette

* n_models (int) — Number of models generated

Variables
* alignment (Alignment) — The alignment object that will be used for modelling
* target (str) — The identifier of the protein to model

* templates (1ist)— The iterable containing the identifier(s) of the template(s) used for the
modelling

* tag (str) — The identifier associated with a specific execution of the routine

* n_threads (int) — Number of threads used for model generation

n_models (int) — Number of models generated

routine (str) — The identifier associated with a specific routine

models (1ist) — List of models generated by the execution of this routine

Raises
ImportError — Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this Routine object:
¢ n_models
¢ n_threads

The following modelling parameters are set for this class:

modelling parameter | value

model_class altmod.Automodel_statistical_potential
library_schedule modeller.automodel.autosched.slow
md_level modeller.automodel.refine.very_slow
max_var_iterations 400

repeat_optmization 3

Autmodel_statistical_potential uses the DOPE potential for model refinement.

generate_models() — None
Generate models with the parameter set altmod_slow.

Return type
None

class homelette.routines.Routine_promod3 (alignment: Type[Alignment], target: str, templates: Iterable,
tag: str)

Class for performing homology modelling using the ProMod3 engine with default parameters.
Parameters
* alignment (Alignment) — The alignment object that will be used for modelling
* target (str) — The identifier of the protein to model

» templates (iterable)— The iterable containing the identifier of the template used for the
modelling

Variables

104 Chapter 3. APl Documentation

homelette

Raises

alignment (Alignment) — The alignment object that will be used for modelling
target (str) — The identifier of the protein to model

templates (iterable) — The iterable containing the identifier of the template used for the
modelling

tag (str) — The identifier associated with a specific execution of the routine
routine (str)— The identifier associated with this specific routine: promod3

models (1ist) — List of models generated by the execution of this routine

ImportError — Unable to import dependencies

ValueError — Number of given templates is not 1

generate_models() — None

Generate models with the ProMod3 engine with default parameters.

Return type

class homelette

None

.routines.Routine_loopmodel_default (alignment: Type[Alignment], target: str,

templates: Iterable, tag: str, loop_selections:
Iterable, n_models: int = 1, n_loop_models: int =

D

Class for performing homology loop modelling using the loopmodel class from modeller with a default parameter

set.

Parameters

alignment (Alignment) — The alignment object that will be used for modelling
target (str) — The identifier of the protein to model

templates (Iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

tag (str) — The identifier associated with a specific execution of the routine

loop_selections (Iterable) — Selection(s) with should be refined with loop modelling,
in modeller format (example: [[‘18:A’, 22:A’], [29:A’, ‘33:A’]])

n_models (int) — Number of models generated (default 1)

n_loop_models (int) — Number of loop models generated for each model (default 1)

Variables

alignment (Alignment) — The alignment object that will be used for modelling
target (str) — The identifier of the protein to model

templates (Iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

tag (str) — The identifier associated with a specific execution of the routine
loop_selections (Iterable) — Selection(s) with should be refined with loop modelling
n_models (int) — Number of models generated

n_loop_models (int) — Number of loop models generated for each model

3.3. homelette.routines 105

homelette

routine (str) — The identifier associated with a specific routine

* models (1ist)— List of models generated by the execution of this routine

Raises

ImportError — Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this Routine object:

* loop_selections

¢ n_models

* n_loop_models

The following modelling parameters are set for this class:

modelling parameter value

model_class modeller.automodel.LoopModel
library_schedule modeller.automodel.autosched.normal
md_level modeller.automodel.refine.very_fast
max_var_iterations 200

repeat_optmization 1

loop_library_schedule modeller.automodel.autosched.loop
loop_md_level modeller.automodel.refine.slow
loop_max_var_iterations | 200

n_threads 1

generate_models() — None

Generate models with the parameter set loopmodel_default.

Return type

None

class homelette.routines.Routine_loopmodel_slow(alignment: Type[Alignment], target: str, templates:

Iterable, tag: str, loop_selections: Iterable, n_models:
int =1, n_loop_models: int = 1)

Class for performing homology loop modelling using the loopmodel class from modeller with a slow parameter

set.

Parameters

alignment (Alignment) — The alignment object that will be used for modelling
target (str) — The identifier of the protein to model

templates (Iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

tag (str) — The identifier associated with a specific execution of the routine

loop_selections (Iterable) — Selection(s) with should be refined with loop modelling,
in modeller format (example: [[‘18:A’, 22:A’], [129:A’, ‘33:A’]])

n_models (int) — Number of models generated (default 1)

n_loop_models (int) — Number of loop models generated for each model (default 1)

106

Chapter 3. APl Documentation

homelette

Variables
e alignment (Alignment) — The alignment object that will be used for modelling
* target (str)— The identifier of the protein to model

* templates (Iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

* tag (str) — The identifier associated with a specific execution of the routine
* loop_selections (Iterable) — Selection(s) with should be refined with loop modelling
* n_models (int) — Number of models generated

* n_loop_models (int) — Number of loop models generated for each model

routine (str) — The identifier associated with a specific routine

models (1ist) — List of models generated by the execution of this routine

Raises
ImportError — Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this Routine object:
* loop_selections
* n_models
* n_loop_models

The following modelling parameters are set for this class:

modelling parameter value

model_class modeller.automodel.LoopModel
library_schedule modeller.automodel.autosched.slow
md_level modeller.automodel.refine.very_slow
max_var_iterations 400

repeat_optmization 3

loop_library_schedule modeller.automodel.autosched.slow
loop_md_level modeller.automodel.refine.very_slow
loop_max_var_iterations | 400

n_threads 1

generate_models() — None
Generate models with the parameter set loopmodel_slow.

Return type
None

class homelette.routines.Routine_complex_automodel_default (alignment: Type[Alignment], target:
str, templates: Iterable, tag: str,
n_threads: int = 1, n_models: int = 1)

Class for performing homology modelling of complexes using the automodel class from modeller with a default
parameter set.

Parameters

3.3. homelette.routines 107

homelette

* alignment (Alignment) — The alignment object that will be used for modelling

target (str) — The identifier of the protein to model

templates (Iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

* tag (str) — The identifier associated with a specific execution of the routine
e n_threads (int) — Number of threads used in model generation (default 1)
* n_models (int) — Number of models generated (default 1)
Variables
e alignment (Alignment) — The alignment object that will be used for modelling
* target (str)— The identifier of the protein to model

* templates (Iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

* tag (str) — The identifier associated with a specific execution of the routine
* n_threads (int) — Number of threads used for model generation

* n_models (int) — Number of models generated

» routine (str) — The identifier associated with a specific routine

* models (1ist) — List of models generated by the execution of this routine

Raises
ImportError — Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this Routine object:
¢ n_models
¢ n_threads

The following modelling parameters are set for this class:

modelling parameter | value

model_class modeller.automodel.automodel
library_schedule modeller.automodel.autosched.normal
md_level modeller.automodel.refine.very_fast
max_var_iterations 200

repeat_optmization 1

generate_models() — None
Generate complex models with the parameter set automodel_default.

Return type
None

class homelette.routines.Routine_complex_automodel_slow(alignment: Type[Alignment], target: str,
templates: Iterable, tag: str, n_threads: int
=], n_models: int = 1)

108 Chapter 3. APl Documentation

homelette

Class for performing homology modelling of complexes using the automodel class from modeller with a slow
parameter set.

Parameters
* alignment (Alignment) — The alignment object that will be used for modelling
* target (str)— The identifier of the protein to model

* templates (Iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

* tag (str) — The identifier associated with a specific execution of the routine
e n_threads (int) — Number of threads used in model generation (default 1)
* n_models (int) — Number of models generated (default 1)
Variables
* alignment (Alignment) — The alignment object that will be used for modelling
* target (str)— The identifier of the protein to model

* templates (Iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

* tag (str) — The identifier associated with a specific execution of the routine
* n_threads (int) — Number of threads used for model generation

* n_models (int) — Number of models generated

routine (str) — The identifier associated with a specific routine

models (1ist) — List of models generated by the execution of this routine

Raises
ImportError — Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this Routine object:
¢ n_models
¢ n_threads

The following modelling parameters are set for this class:

modelling parameter | value

model_class modeller.automodel.automodel
library_schedule modeller.automodel.autosched.slow
md_level modeller.automodel.refine.very_slow
max_var_iterations 400

repeat_optmization 3

generate_models() — None

Generate complex models with the parameters set automodel_slow.

Return type
None

3.3.

homelette.routines 109

homelette

class homelette.routines.Routine_complex_altmod_default (alignment: Type[Alignment], target: str,
templates: Iterable, tag: str, n_threads: int
= [, n_models: int = 1)

Class for performing homology modelling of complexes using the Automodel_statistical_potential class from
altmod with a default parameter set.

Parameters
* alignment (Alignment) — The alignment object that will be used for modelling
* target (str) — The identifier of the protein to model

* templates (iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

* tag (str) — The identifier associated with a specific execution of the routine
* n_threads (int) — Number of threads used in model generation
e n_models (int) — Number of models generated
Variables
* alignment (Alignment) — The alignment object that will be used for modelling
* target (str)— The identifier of the protein to model

* templates (1ist)— The iterable containing the identifier(s) of the template(s) used for the
modelling

* tag (str) — The identifier associated with a specific execution of the routine

e n_threads (int) — Number of threads used for model generation

n_models (int) — Number of models generated

routine (str) — The identifier associated with a specific routine
» models (1ist) — List of models generated by the execution of this routine

Raises
ImportError — Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this Routine object:
* n_models
¢ n_threads

The following modelling parameters are set for this class:

modelling parameter | value

model_class altmod.Automodel_statistical_potential
library_schedule modeller.automodel.autosched.normal
md_level modeller.automodel.refine.very_fast
max_var_iterations 200

repeat_optmization 1

Autmodel_statistical_potential uses the DOPE potential for model refinement.

110 Chapter 3. APl Documentation

homelette

generate_models() — None

Generate complex models with the parameter set altmod_default.

Return type
None

class homelette.routines.Routine_complex_altmod_slow(alignment: Type[Alignment], target: str,
templates: Iterable, tag: str, n_threads: int =1,
n_models: int=1)

Class for performing homology modelling of complexes using the Automodel_statistical_potential class from
altmod with a slow parameter set.

Parameters
e alignment (Alignment) — The alignment object that will be used for modelling
* target (str)— The identifier of the protein to model

* templates (iterable) — The iterable containing the identifier(s) of the template(s) used
for the modelling

* tag (str) — The identifier associated with a specific execution of the routine
* n_threads (int) — Number of threads used in model generation
* n_models (int) — Number of models generated
Variables
e alignment (Alignment) — The alignment object that will be used for modelling
* target (str)— The identifier of the protein to model

» templates (1ist) - The iterable containing the identifier(s) of the template(s) used for the
modelling

* tag (str) — The identifier associated with a specific execution of the routine
* n_threads (int) — Number of threads used for model generation

* n_models (int) — Number of models generated

e routine (str) — The identifier associated with a specific routine

» models (1ist) — List of models generated by the execution of this routine

Raises
ImportError — Unable to import dependencies

Notes

The following modelling parameters can be set when initializing this Routine object:
¢ n_models
e n_threads

The following modelling parameters are set for this class:

3.3. homelette.routines 111

homelette

modelling parameter | value

model_class altmod.Automodel_statistical_potential
library_schedule modeller.automodel.autosched.slow
md_level modeller.automodel.refine.very_slow
max_var_iterations 400

repeat_optmization 3

Autmodel_statistical_potential uses the DOPE potential for model refinement.

generate_models() — None

Generate complex models with the parameter set altmod_slow.

Return type
None

3.4 homelette.evaluation

The homelette.evaluation submodule contains different classes for evaluating homology models.

It is possible to implement custom Evaluation building blocks and use them in the homelette framework.

3.4.1 Tutorials

Working with model evaluations in homelette is discussed in detail in Tutorial 3. Implementing custom evaluation
metrics is discussed in Tutorial 4. Assembling custom pipelines is discussed in Tutorial 7.

3.4.2 Classes

The following evaluation metrics are implemented:

Evaluation_dope Evaluation_soap_protein Evaluation_soap_pp Evaluation_gmean4
Evaluation_gmean6 Evaluation_gmeandisco Evaluation_mol_probity

class homelette.evaluation.Evaluation_dope (model: Type[Model], quiet: bool = False)

Class for evaluating a model with DOPE score.
Will dump the following entries to the model.evaluation dictionary:
e dope

* dope_z_score

Parameters
* model (Model) — The model object to evaluate

* quiet (bool) — If True, will perform evaluation with suppressing stdout (default False).
Needs to be False for running it asynchronously, as done when running Task.evaluate_models
with multple cores

Variables

* model (Model) — The model object to evaluate

112 Chapter 3. APl Documentation

homelette

* output (dict) — Dictionary that all outputs will be dumped into

Raises
ImportError — Unable to import dependencies

Notes

DOPE is a staticial potential for the evaluation of homology models'. For further information, please check the
modeller documentation or the associated publication.

References

evaluate() — None

Run DOPE evaluation. Automatically called on object initialization

Return type
None

class homelette.evaluation.Evaluation_soap_protein(model: Type[Model], quiet: bool = False)
Class for evaluating a model with the SOAP protein protential.

Will dump the following entries to the model.evaluation dictionary:

* soap_protein

Parameters
* model (Model) — The model object to evaluate

* quiet (bool) — If True, will perform evaluation with suppressing stdout (default False).
Needs to be False for running it asynchronously, as done when running Task.evaluate_models
with multple cores

Variables
* model (Model) — The model object to evaluate
* output (dict) — Dictionary that all outputs will be dumped into

Raises
ImportError — Unable to import dependencies

Notes

SOAP is a statistical potential for evaluating homology models”. For more information, please check the modeller
and SOAP documentations or the associated publication.

! Shen, M., & Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Science, 15(11), 2507-2524.
https://doi.org/10.1110/ps.062416606

2 Dong, G. Q., Fan, H., Schneidman-Duhovny, D., Webb, B., Sali, A., & Tramontano, A. (2013). Optimized atomic statistical potentials:
Assessment of protein interfaces and loops. Bioinformatics, 29(24), 3158-3166. https://doi.org/10.1093/bioinformatics/btt560

3.4. homelette.evaluation 113

https://doi.org/10.1110/ps.062416606
https://doi.org/10.1093/bioinformatics/btt560

homelette

References

evaluate() — None

Run SOAP protein evaluation. Automatically called on object initialization

Return type
None

class homelette.evaluation.Evaluation_soap_pp (model: Type[Model], quiet: bool = False)

Class for evaluating a model with SOAP interaction potentials. This is used for the evaluation of models of
protein complexes.

Will dump the following entries to the model.evaluation dictionary:
* soap_pp_all
* soap_pp_atom

* soap_pp_pair

Parameters
* model (Model) — The model object to evaluate

* quiet (bool) — If True, will perform evaluation with suppressing stdout (default False).
Needs to be False for running it asynchronously, as done when running Task.evaluate_models
with multple cores

Variables
» model (Model) — The model object to evaluate
* output (dict) — Dictionary that all outputs will be dumped into

Raises
ImportError — Unable to import dependencies

Notes

SOAP is a statistical potential for evaluating homology models®. For more information, please check the modeller
and SOAP documentations or the associated publication.

References

evaluate() — None

Run SOAP interaction evaluation. Automatically called on object initialization

Return type
None

class homelette.evaluation.Evaluation_agmean4 (model: Type[Model], quiet: bool = False)
Class for evaluating a model with the QMEAN4 potential.

Will dump the following entries to the model.evaluation dictionary:
* gmean4

e gmean4_z_score

3 Dong, G. Q., Fan, H., Schneidman-Duhovny, D., Webb, B., Sali, A., & Tramontano, A. (2013). Optimized atomic statistical potentials:
Assessment of protein interfaces and loops. Bioinformatics, 29(24), 3158-3166. https://doi.org/10.1093/bioinformatics/btt560

114 Chapter 3. APl Documentation

https://doi.org/10.1093/bioinformatics/btt560

homelette

Parameters
* model (Model) — The model object to evaluate.

* quiet (bool) — If True, will perform evaluation with suppressing stdout (default False).
Needs to be False for running it asynchronously, as done when running Task.evaluate_models
with multple cores

Variables
* model (Model) — The model object to evaluate
* output (dict) — Dictionary that all outputs will be dumped into
Raises
ImportError — Unable to import dependencies
See also:

Evaluation_gmean6, Evaluation_gmeandisco

Notes

QMEAN is a statistical potential for evaluating homology models*’.

Briefly, QMEAN is a combination of different components. Four compoenents (interaction, cbeta, packing and
torsion) form the gmean4 score.

For more information, please check the QMEAN documentation or the associated publications.

References

evaluate() — None

Run QMEAN4 protein evaluation. Automatically called on object initialization :rtype: None

class homelette.evaluation.Evaluation_gmean6 (model: Type[Model], quiet: bool = False)
Class for evaluating a model with the QMEANG potential.

Will dump the following entries to the model.evaluation dictionary:
* gmean6
* gmean6_disco

Requires the following valid entries in the model.info dictionary:
* accpro_file (.acc file)

* psipred_file (.horiz file)

Parameters
» model (Model) — The model object to evaluate.

e quiet (bool) — If True, will perform evaluation with suppressing stdout (default False).
Needs to be False for running it asynchronously, as done when running Task.evaluate_models
with multple cores

4 Benkert, P, Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins:
Structure, Function and Genetics, 71(1), 261-277. https://doi.org/10.1002/prot.21715

5 Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinfor-
matics, 27(3), 343-350. https://doi.org/10.1093/bioinformatics/btq662

3.4. homelette.evaluation 115

https://doi.org/10.1002/prot.21715
https://doi.org/10.1093/bioinformatics/btq662

homelette

Variables
* model (Model) — The model object to evaluate
* output (dict) — Dictionary that all outputs will be dumped into
Raises
ImportError — Unable to import dependencies
See also:

Evaluation_gmean4, Evaluation_qmeandisco

Notes

QMEAN is a statistical potential for evaluating homology models®’.

QMEANG is a combination of six different components (interaction, cbeta, packing, torsion, ss_agreement,
acc_agreement). It is an extension to the QMEAN4 score, which additionally evaluates the agreement of the
model to secondary structur predictions from PSIPRED® and solvent accessiblity predictions from ACCpro®.

For more information, please check the QMEAN documentation or the associated publications.

References

evaluate() — None
Run QMEANG protein evaluation. Automatically called on object initialization

Return type
None

class homelette.evaluation.Evaluation_gmeandisco(model: Type[Model], quiet: bool = False)
Class for evaluating a model with the QMEAN DisCo potential.

Will dump the following entries to the model.evaluation dictionary:
e gmean6
e gmean6_z_score
e gmean_local_scores_avg
e gmean_local_scores_err
Requires the following valid entries in the model.info dictionary:
e accpro_file (.acc file)
* psipred_file (.horiz file)

e disco_file (generated by gmean.DisCoContainer.Save)

Parameters

6 Benkert, P., Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins:
Structure, Function and Genetics, 71(1), 261-277. https://doi.org/10.1002/prot.21715

7 Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinfor-
matics, 27(3), 343-350. https://doi.org/10.1093/bioinformatics/btq662

8 Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292(2),
195-202. https://doi.org/10.1006/JMBI1.1999.3091

 Magnan, C. N., & Baldi, P. (2014). SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessi-
bility using profiles, machine learning and structural similarity. Bioinformatics, 30(18), 2592-2597. https://doi.org/10.1093/BIOINFORMATICS/
BTU352

116 Chapter 3. APl Documentation

https://doi.org/10.1002/prot.21715
https://doi.org/10.1093/bioinformatics/btq662
https://doi.org/10.1006/JMBI.1999.3091
https://doi.org/10.1093/BIOINFORMATICS/BTU352
https://doi.org/10.1093/BIOINFORMATICS/BTU352

homelette

» model (Model) — The model object to evaluate.

e quiet (bool) — If True, will perform evaluation with suppressing stdout (default False).
Needs to be False for running it asynchronously, as done when running Task.evaluate_models
with multple cores

Variables
* model (Model) — The model object to evaluate
* output (dict) — Dictionary that all outputs will be dumped into
Raises
ImportError — Unable to import dependencies
See also:

Evaluation_gmean4, Evaluation_qmeané

Notes

QMEAN is a statistical potential for evaluating homology models''!.

QMEAN DisCo is an extension of QMEAN by the inclusion of homology derived DIStance COnstraints'?.
These distance contraints do not influence the six component of the QMEANG score (interaction, cbeta, packing,
torsion, ss_agreement, acc_agreement), but only the local scores.

The distance contraints for the target have to be generated before and saved to a file.

For more information, please check the QMEAN documentation or the associated publications.

References

evaluate() — None
Run QMEAN DisCo protein evaluation. Automatically called on object initialization

Return type
None

class homelette.evaluation.Evaluation_mol_probity (model: Type[Model], quiet: bool = False)

Class for evaluating a model with the MolProbity validation service.
Will dump the following entries to the model.evaluation dictionary:

e mp_score

Parameters
* model (Model) — The model object to evaluate

* quiet (bool) — If True, will perform evaluation with suppressing stdout (default False).
Needs to be False for running it asynchronously, as done when running Task.evaluate_models
with multple cores

Variables

10 Benkert, P, Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins:
Structure, Function and Genetics, 71(1), 261-277. https://doi.org/10.1002/prot.21715

I Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinfor-
matics, 27(3), 343-350. https://doi.org/10.1093/bioinformatics/btq662

12 Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, R., Haas, J., & Schwede, T. (2020). QMEANDisCo-distance constraints applied on
model quality estimation. Bioinformatics, 36(6), 1765-1771. https://doi.org/10.1093/bioinformatics/btz828

3.4. homelette.evaluation 117

https://doi.org/10.1002/prot.21715
https://doi.org/10.1093/bioinformatics/btq662
https://doi.org/10.1093/bioinformatics/btz828

homelette

» model (Model) — The model object to evaluate
* output (dict) — Dictionary that all outputs will be dumped into
Notes

Molprobity is a program that evaluates the quality of 3D structures of proteins based on structural features'? 4!,
For more information, please check the MolProbity webpage or the associated publications.

References

evaluate() — None

Run MolProbity evaluation. Automatically called on object initialization

Return type
None

3.5 homelette.pdb_io

The homelette.pdb_io submodule contains an object for parsing and manipulating PDB files. There are several
constructor function that can read PDB files or download them from the internet.

3.5.1 Functions and classes

Functions and classes present in homelette.pdb_io are listed below:

PdbObject read_pdb() download_pdb()

homelette.pdb_io.read_pdb(file_name: str) — PdbObject
Reads PDB from file.

Parameters
file_name (str)— PDB file name

Return type
PdbObject

13 Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., Murray, L. W., Arendall, W. B., Snoeyink, J., Richardson,
J. S., & Richardson, D. C. (2007). MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Research,
35(suppl_2), W375-W383. https://doi.org/10.1093/NAR/GKM216

14 Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richard-
son, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D: Biological
Crystallography, 66(1), 12-21. https://doi.org/10.1107/S0907444909042073

15 Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B.,
Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More
and better reference data for improved all-atom structure validation. Protein Science, 27(1), 293-315. https://doi.org/10.1002/pro.3330

118 Chapter 3. APl Documentation

https://doi.org/10.1093/NAR/GKM216
https://doi.org/10.1107/S0907444909042073
https://doi.org/10.1002/pro.3330

homelette

Notes

If a PDB file with multiple MODELS is read, only the first model will be conserved.

homelette.pdb_io.download_pdb (pdbid: str) — PdbObject
Download PDB from the RCSB.

Parameters
pdbid (str)— PDB identifier

Return type
PdbObject

Notes

If a PDB file with multiple MODELSs is read, only the first model will be conserved.

class homelette.pdb_io.PdbObject (lines: Iterable)
Object encapsulating functionality regarding the processing of PDB files

Parameters
lines (Iterable) — The lines of the PDB

Variables
lines — The lines of the PDB, filtered for ATOM and HETATM records

Return type
None

See also:

read_pdb, download_pdb

Notes

Please contruct instances of PdbObject using the constructor functions.
If a PDB file with multiple MODELS is read, only the first model will be conserved.

write_pdb(file_name) — None
Write PDB to file.

Parameters
file_name (str) — The name of the file to write the PDB to.

Return type
None

parse_to_pd() — pandas.DataFrame
Parses PDB to pandas dataframe.

Return type
pd.DataFrame

3.5. homelette.pdb_io 119

homelette

Notes

Information is extracted according to the PDB file specification (version 3.30) and columns are named

accordingly. See https://www.wwpdb.org/documentation/file-format for more information.
get_sequence (ignore_missing: bool = True) — str

Retrieve the 1-letter amino acid sequence of the PDB, grouped by chain.

Parameters
ignore_missing (bool) - Changes behaviour with regards to unmodelled residues. If True,
they will be ignored for generating the sequence (default). If False, they will be represented
in the sequence with the character X.

Returns
Amino acid sequence

Return type
str

get_chains() — list
Extract all chains present in the PDB.

Return type
list

transform_extract_chain(chain) — PdbObject
Extract chain from PDB.

Parameters
chain (str) — The chain ID to be extracted.

Return type
PdbObject

transform_renumber_residues (starting_res: int = 1) — PdbObject

Renumber residues in PDB.

Parameters
starting_res (int) — Residue number to start renumbering at (default 1)

Return type
PdbObject

Notes
Missing residues in the PDB (i.e. unmodelled) will not be considered in the renumbering. If multiple
chains are present in the PDB, numbering will be continued from one chain to the next one.

transform_change_chain_id(new_chain_id) — PdbObject
Replace chain ID for every entry in PDB.

Parameters
new_chain_id (str) — New chain ID.

Return type
PdbObject

120 Chapter 3. APl Documentation

https://www.wwpdb.org/documentation/file-format

homelette

transform_remove_hetatm() — PdbObject
Remove all HETATM entries from PDB.

Return type
PdbObject

transform_filter_res_name (selection: Iterable, mode: str = 'out') — PdbObject
Filter PDB by residue name.

Parameters
e selection (Iterable) — For which residue names to filter

* mode (str) — Filtering mode. If mode = “out”, the selection will be filtered out (default).

x99

If mode = “in”, everything except the selection will be filtered out.

Return type
PdbObject

transform_filter_res_seq(lower: int, upper: int) — PdbObject
Filter PDB by residue number.

Parameters
¢ lower (int) — Lower bound of range to filter with.
* upper (int) — Upper bound of range to filter with, inclusive.

Return type
PdbObject

transform_concat (*others: PdbObject) — PdbObject
Concat PDB with other PDBs.

Parameters
*others ('PdbObject) — Any number of PDBs.

Return type
PdbObject

3.5. homelette.pdb_io 121

homelette

122 Chapter 3. APl Documentation

CHAPTER
FOUR

EXTENSIONS

homelette can be extended by new building blocks. This section introduces how extensions work, and where to find
them.

4.1 homelette Extensions

Extensions are homology modelling building blocks (model generation, model evaluation) that are developed by users
and expand the homelette interface. homelette can and should be extended by custom Routines and Evaluations. We
strongly encourage users to share extensions they themselves found useful with the community.

4.1.1 Using Extensions

Extensions are placed in the extension folder in the homelette package. The extension folder on your device can be
found in the following way:

import homelette.extension as ext
print(ext.__file_)

After an extension has been placed in the extension folder, it can be used as such:

import homelette.extension.your_extension as ext_1

4.1.2 Submitting Extensions
Please contact us with a Pull Request on GitHub or via Email (philipp.junk@ucdconnect.ie) if you want to share

your extension! Please make sure your extension is sufficiently annotated for others to use, in particular mentioning
dependencies or other requirements.

4.1.3 Existing Extensions

The following extensions have already been implemented. They should be already included in the latest version of
homelette. If not, they are available from our GitHub page.

123

mailto:philipp.junk@ucdconnect.ie
https://github.com/PhilippJunk/homelette/

homelette

FoldX extension to homelette

Philipp Junk, 2021

This extension contains evaluation metrics based on FoldX, a force field for energy calculation and protein design
(https://foldxsuite.crg.eu/)' 2.

Usage

import homelette.extension.extension_foldx as extension_foldx
help(extension_foldx.Evaluation_foldx_stability)

This extension expects FoldX to be installed and in your path.

Functions and classes

Currently contains the following items:
Evaluation_foldx_repairmodels Evaluation_foldx_interaction Evaluation_foldx_stability
Evaluation_foldx_alascan_buildmodels Evaluation_foldx_alascan_interaction

class homelette.extension.extension_foldx.Evaluation_foldx_repairmodels (model, quiet=False)

Creates a modified version of the PDB and runs RepairPDB on it
Will not dump an entry to the model.evaluation dictionary
Parameters
» model (Model) — The model object to evaluate

e quiet (bool) — If True, will perform evaluation with suppressing stdout (default False).
Needs to be False for running it asynchronously, as done when running Task.evaluate_models
with multple cores

Variables
* model (Model) — The model object to evaluate

* output (dict) — Dictionary that all outputs will be dumped into

Notes
Most PDBs work fine with FoldX. For a specific use case in which I was working with GTP heteroatoms, I had
to rename a few atoms to make the PDB compliant with FoldX.

evaluate()
Repairs models with FoldX. Automatically called on object initialization

Return type
None

! Guerois, R., Nielsen, J. E., & Serrano, L. (2002). Predicting Changes in the Stability of Proteins and Protein Complexes: A Study of More
Than 1000 Mutations. Journal of Molecular Biology, 320(2), 369-387. https://doi.org/10.1016/S0022-2836(02)00442-4

2 Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX web server: an online force field. Nucleic Acids
Research, 33(Web Server), W382-W388. https://doi.org/10.1093/nar/gki387

124 Chapter 4. Extensions

https://foldxsuite.crg.eu/
https://doi.org/10.1016/S0022-2836(02)00442-4
https://doi.org/10.1093/nar/gki387

homelette

class homelette.extension.extension_foldx.Evaluation_foldx_interaction(model, quiet=False)

Calculates interaction energy with FoldX

Requires a protein-protein complex. Expects Evaluation_foldx_repairmodels to have been performed before-
hand.

Will dump the following entries to the model.evaluation dictionary:

¢ foldx_interaction

Parameters
* model (Model) — The model object to evaluate

* quiet (bool) — If True, will perform evaluation with suppressing stdout (default False).
Needs to be False for running it asynchronously, as done when running Task.evaluate_models
with multple cores

Variables
* model (Model) — The model object to evaluate

* output (dict) — Dictionary that all outputs will be dumped into

evaluate()

Calculates protein interaction energy with FoldX. Automatically called on object initialization.

Return type
None

class homelette.extension.extension_foldx.Evaluation_foldx_stability (model, quiet=False)
Calculate protein stability with FoldX

Expects Evaluation_foldx_repairmodels to have been performed beforehand.
Will dump the following entries to the model.evaluation dictionary:

 foldx_stability

Parameters
» model (Model) — The model object to evaluate

e quiet (bool) — If True, will perform evaluation with suppressing stdout (default False).
Needs to be False for running it asynchronously, as done when running Task.evaluate_models
with multple cores

Variables
* model (Model) — The model object to evaluate

* output (dict) — Dictionary that all outputs will be dumped into

evaluate()

Calculates protein stability with FoldX. Automatically called on object initialization.

Return type
None

4.1. homelette Extensions 125

homelette

class homelette.extension.extension_foldx.Evaluation_foldx_alascan_buildmodels (model,
quiet=Fualse)

Generates alanine point mutations for all positions in the given model using FoldX. Automatically called on
object initialization.

Expects Evaluation_foldx_repairmodels to have been performed beforehand.
Will not dump an entry to the model.evaluation dictionary.
Parameters
» model (Model) — The model object to evaluate

e quiet (bool) — If True, will perform evaluation with suppressing stdout (default False).
Needs to be False for running it asynchronously, as done when running Task.evaluate_models
with multple cores

Variables
* model (Model) — The model object to evaluate
* output (dict) — Dictionary that all outputs will be dumped into
See also:

Evaluation_foldx_alascan_interaction

Notes

This Evaluation is very RAM intensive, so expect only to run 1 or 2 threads ni parallel.

evaluate()
Generates alanine point mutations for all positions in the given model. Automatically called on object
initialization.
Return type
None

class homelette.extension.extension_foldx.Evaluation_foldx_alascan_interaction(model,
quiet=False)

Calculates protein interaction energy with FoldX for all alanine point mutations generated by Evalua-
tion_foldx_alascan_buildmodels.

Expects Evaluation_foldx_alascan_buildmodels to have been run before.
Will dump the following entry to the model.evaluation dictionary:
« foldx_alascan: Dictionary of all interaction energies for all alanine
scan mutations.
Parameters
* model (Model) — The model object to evaluate

* quiet (bool) — If True, will perform evaluation with suppressing stdout (default False).
Needs to be False for running it asynchronously, as done when running Task.evaluate_models
with multple cores

Variables
* model (Model) — The model object to evaluate

* output (dict) — Dictionary that all outputs will be dumped into

126 Chapter 4. Extensions

homelette

See also:
Evaluation_foldx_alascan_buildmodels

evaluate()
Calculates protein interaction energy with FoldX for all alanine point mutations generated by Evalua-
tion_foldx_alascan_buildmodels.

Return type
None

4.1. homelette Extensions 127

homelette

128 Chapter 4. Extensions

CHAPTER
FIVE

INDICES AND TABLES

* genindex

¢ modindex

129

homelette

130 Chapter 5. Indices and tables

h

homelette.
homelette.
homelette.
.organization, 75
.pdb_io, 118
.routines, 99

homelette
homelette
homelette

alignment, 78
evaluation, 112
extension.extension_foldx, 123

PYTHON MODULE INDEX

131

homelette

132 Python Module Index

A

Alignment (class in homelette.alignment), 78
AlignmentGenerator (class in homelette.alignment), 87

AlignmentGenerator_from_aln (class in home-
lette.alignment), 96

AlignmentGenerator_hhblits (class in home-
lette.alignment), 93

AlignmentGenerator_pdb (class in home-

lette.alignment), 90
annotate() (homelette.alignment.Sequence method), 84
assemble_complex_aln() (in module home-
lette.alignment), 98

C

calc_coverage()
method), 82
calc_coverage_target()
lette.alignment.Alignment method), 83
calc_identity(Q (homelette.alignment.Alignment
method), 80
calc_identity_target()
lette.alignment.Alignment method), 82
calc_pairwise_coverage_all()
lette.alignment.Alignment method), 84
calc_pairwise_identity_all()
lette.alignment.Alignment method), 81

(homelette.alignment.Alignment

(home-

(home-
(home-

(home-

D

download_pdb() (in module homelette.pdb_io), 119

E

evaluate() (homelette.evaluation. Evaluation_dope
method), 113

evaluate() (homelette.evaluation. Evaluation_mol_probity

method), 118

evaluate() (homelette.evaluation. Evaluation_gmean4
method), 115

evaluate() (homelette.evaluation.Evaluation_gmean6
method), 116

evaluate() (homelette.evaluation. Evaluation_gmeandisco

method), 117

INDEX

evaluate() (homelette.evaluation. Evaluation_soap_pp
method), 114

evaluate() (homelette.evaluation. Evaluation_soap_protein
method), 114

evaluate() (homelette.extension.extension_foldx.Evaluation_foldx_alasca
method), 126

evaluate() (homelette.extension.extension_foldx. Evaluation_foldx_alasca
method), 127

evaluate() (homelette.extension.extension_foldx.Evaluation_foldx_interac
method), 125

evaluate() (homelette.extension.extension_foldx. Evaluation_foldx_repair
method), 124

evaluate() (homelette.extension.extension_foldx. Evaluation_foldx_stabili
method), 125

evaluate_models()
method), 76

Evaluation_dope (class in homelette.evaluation), 112

Evaluation_foldx_alascan_buildmodels (class in
homelette.extension.extension_foldx), 125

Evaluation_foldx_alascan_interaction (class in
homelette.extension.extension_foldx), 126

Evaluation_foldx_interaction (class in home-
lette.extension.extension_foldx), 124

Evaluation_foldx_repairmodels (class in home-
lette.extension.extension_foldx), 124

(homelette.organization.Task

Evaluation_foldx_stability (class in home-
lette.extension.extension_foldx), 125
Evaluation_mol_probity (class in home-

lette.evaluation), 117

Evaluation_gmeand (class in homelette.evaluation),
114

Evaluation_gmean6 (class in homelette.evaluation),
115

Evaluation_gmeandisco
lette.evaluation), 116

Evaluation_soap_pp (class in homelette.evaluation),
114

Evaluation_soap_protein
lette.evaluation), 113

execute_routine() (homelette.organization. Task
method), 76

(class in home-

(class in home-

133

homelette

F

from_fasta() (homelette.alignment. AlignmentGenerator

class method), 88

from_fasta() (homelette.alignment.AlignmentGenerator_from_aln

method), 97

from_fasta() (homelette.alignment.AlignmentGenerator_hhblits

class method), 94

from_fasta() (homelette.alignment.AlignmentGenerator_pdb

class method), 91

G

generate_models() (home-
lette.routines.Routine_altmod_default method),
103

generate_models() (home-
lette.routines.Routine_altmod_slow method),
104

generate_models() (home-
lette.routines.Routine_automodel_default
method), 101

generate_models() (home-
lette.routines. Routine_automodel_slow
method), 102

generate_models() (home-

lette.routines.Routine_complex_altmod_default
method), 110

generate_models() (home-
lette.routines.Routine_complex_altmod_slow
method), 112

generate_models() (home-

get_pdbs() (homelette.alignment.AlignmentGenerator
method), 89

get_pdbs () (homelette.alignment.AlignmentGenerator_from_aln

method), 97

get_pdbs) (homelette.alignment.AlignmentGenerator_hhblits

method), 95

get_pdbs) (homelette.alignment.AlignmentGenerator_pdb

method), 91

get_sequence()
method), 78

get_sequence()
method), 77

get_sequence() (homelette.pdb_io.PdbObject method),
120

get_suggestion() (home-
lette.alignment. AlignmentGenerator method),
88

get_suggestion() (home-
lette.alignment.AlignmentGenerator_from_aln
method), 97

get_suggestion() (home-
lette.alignment.AlignmentGenerator_hhblits
method), 94

get_suggestion() (home-
lette.alignment.AlignmentGenerator_pdb
method), 91

(homelette.alignment.Alignment

(homelette.organization.Model

H

homelette.alignment
module, 78

lette. routines.Routine_complex_automodel_defaul]flomelette -evaluation

method), 108

generate_models() (home-
lette.routines.Routine_complex_automodel_slow
method), 109

generate_models() (home-
lette.routines.Routine_loopmodel_default
method), 106

generate_models() (home-
lette.routines.Routine_loopmodel_slow
method), 107

generate_models() (home-
lette.routines.Routine_promod3 method),
105

get_annotation_pir(Q) (home-
lette.alignment.Sequence method), 86

get_annotation_print() (home-

lette.alignment.Sequence method), 86
get_chains() (homelette.pdb_io.PdbObject method),

120
get_evaluation()

method), 76
get_gaps) (homelette.alignment.Sequence method), 86

(homelette.organization. Task

module, 112
homelette.extension.extension_foldx
module, 123
homelette.organization
module, 75
homelette.pdb_io
module, 118
homelette.routines
module, 99

initialize_task() (home-
lette.alignment.AlignmentGenerator method),
89

initialize_task() (home-
lette.alignment.AlignmentGenerator_from_aln
method), 97

initialize_task() (home-
lette.alignment.AlignmentGenerator_hhblits
method), 95

initialize_task() (home-
lette.alignment.AlignmentGenerator_pdb
method), 92

134

Index

homelette

M

Model (class in homelette.organization), 77

module
homelette.alignment, 78
homelette.evaluation, 112
homelette.extension.extension_foldx, 123
homelette.organization, 75
homelette.pdb_io, 118
homelette.routines, 99

P

parse_pdb() (homelette.organization.Model method),
77

parse_to_pd() (homelette.pdb_io.PdbObject method),
119

PdbObject (class in homelette.pdb_io), 119

print_clustal() (homelette.alignment.Alignment
method), 79

R

read_pdb () (in module homelette.pdb_io), 118

remove_gaps() (homelette.alignment.Sequence
method), 87

remove_redundant_gaps ()
lette.alignment.Alignment method), 80

remove_sequence() (homelette.alignment. Alignment
method), 79

rename () (homelette.organization.Model method), 77

rename_sequence() (homelette.alignment. Alignment
method), 79

replace_sequence() (homelette.alignment. Alignment
method), 80

Routine_altmod_default
lette.routines), 102

Routine_altmod_slow (class in homelette.routines),
103

(home-

(class in home-

Routine_automodel_default (class in home-
lette.routines), 100
Routine_automodel_slow (class in home-

lette.routines), 101
Routine_complex_altmod_default (class in home-
lette.routines), 109

Routine_complex_altmod_slow (class in home-
lette.routines), 111
Routine_complex_automodel_default (class in

homelette.routines), 107
Routine_complex_automodel_slow (class in home-
lette.routines), 108

S

select_sequences() (homelette.alignment. Alignment
method), 78

select_templates() (home-
lette.alignment.AlignmentGenerator method),
89

select_templates() (home-
lette.alignment.AlignmentGenerator_from_aln
method), 98

select_templates() (home-
lette.alignment.AlignmentGenerator_hhblits
method), 95

select_templates() (home-
lette.alignment.AlignmentGenerator_pdb
method), 92

Sequence (class in homelette.alignment), 84

show_suggestion() (home-
lette.alignment.AlignmentGenerator method),
88

show_suggestion() (home-
lette.alignment.AlignmentGenerator_from_aln
method), 98

show_suggestion() (home-
lette.alignment.AlignmentGenerator_hhblits
method), 96

show_suggestion() (home-
lette.alignment.AlignmentGenerator_pdb
method), 92

T

Task (class in homelette.organization), 75

transform_change_chain_id()
lette.pdb_io.PdbObject method), 120

transform_concat () (homelette.pdb_io.PdbObject
method), 121

(home-

transform_extract_chain() (home-
lette.pdb_io.PdbObject method), 120
transform_filter_res_name() (home-
lette.pdb_io.PdbObject method), 121
transform_filter_res_seq() (home-
lette.pdb_io.PdbObject method), 121
transform_remove_hetatm() (home-
lette.pdb_io.PdbObject method), 120
transform_renumber_residues() (home-

lette.pdb_io.PdbObject method), 120

W

write_clustal() (homelette.alignment.Alignment

Routine_loopmodel_default (class in home- method), 79

lette.routines), 105 write_fasta() (homelette.alignment.Alignment
Routine_loopmodel_slow (class in home- method), 79

lette.routines), 106 write_pdb() (homelette.pdb_io.PdbObject method),
Routine_promod3 (class in homelette.routines), 104 119
Index 135

homelette

write_pir() (homelette.alignment.Alignment method),
79

136 Index

	Setting up homelette
	Installation
	homelette
	Modelling and Evaluation Software
	MODELLER
	altMOD
	ProMod3
	QMEAN
	SOAP potential
	MolProbity

	Alignment Software
	Clustal Omega
	HHSuite3
	Databases for HHSuite3

	Docker
	Setting up the docker image
	Accessing the docker image

	Tutorials
	Tutorial 1: Basics
	Introduction
	Alignment
	Template Structures
	Model Generation
	Model Evaluation
	Further Reading
	References
	Session Info

	Tutorial 2: Modelling
	Introduction
	Alignment
	Model Generation using routines
	Model Generation using Task and routines
	Further Reading
	References
	Session Info

	Tutorial 3: Evaluation
	Introduction
	Model Generation
	Model Evaluation using evaluation
	Model Evaluation using Task and evaluation
	On the combination of different evaluation metrics
	Further reading
	References
	Session Info

	Tutorial 4: Extending homelette
	Introduction
	Alignment
	Defining custom routines
	Defining custom evaluations
	Further reading
	References
	Session Info

	Tutorial 5: Parallelization
	Introduction
	Alignment and Task setup
	Parallel model generation
	Parallel model evaluation
	Further reading
	References
	Session Info

	Tutorial 6: Complex Modelling
	Introduction
	Alignment
	Modelling
	Evaluation
	Further reading
	References
	Session Info

	Tutorial 7: Assembling custom pipelines
	Introduction
	Alignment
	Custom pipeline
	Visualization
	Further Reading
	References
	Session Info

	Tutorial 8: Automatic Alignment Generation
	Introduction
	Method 1: Querying RCSB and Realignment of template sequences with Clusta Omega
	Method 2: HHSuite
	Method 3: Using pre-computed alignments
	Implementing own methods
	Further Reading
	References
	Session Info

	API Documentation
	homelette.organization
	Tutorials
	Classes

	homelette.alignment
	Tutorials
	Functions and classes

	homelette.routines
	Tutorials
	Classes

	homelette.evaluation
	Tutorials
	Classes

	homelette.pdb_io
	Functions and classes

	Extensions
	homelette Extensions
	Using Extensions
	Submitting Extensions
	Existing Extensions
	FoldX extension to homelette
	Usage
	Functions and classes

	Indices and tables
	Python Module Index
	Index

